Search results
1 – 4 of 4Jhumana Akter, Shuvo Dip Datta, Mobasshira Islam, Bassam A. Tayeh, Sadia Ahmmed Sraboni and Niloy Das
The purpose of this research paper is to investigate and evaluate the impacts of utilising Building Information Modelling (BIM) as a lean management tool in Bangladesh's…
Abstract
Purpose
The purpose of this research paper is to investigate and evaluate the impacts of utilising Building Information Modelling (BIM) as a lean management tool in Bangladesh's construction management field. The paper explores how adopting BIM as a lean management tool can improve and expedite a number of processes in building projects, which will ultimately increase project success, cost-effectiveness and efficiency.
Design/methodology/approach
A comprehensive survey was conducted to investigate how BIM deployment as a lean management tool affected project outcomes. This research involved a structured survey amongst construction professionals and a case study on a real project in Bangladesh to assess the effects of using BIM as a lean management tool. The data collected from 112 respondents were analysed statistically and qualitatively to identify the effect of BIM as a lean management tool. Additionally, several software tools, including Revit, Navisworks, Design Review and BIM 360, were used to compare conventional and BIM-based methods.
Findings
The research findings demonstrate that utilising BIM practices improves the quality and safety of construction in Bangladesh. The “Improving the quality of construction” (RII = 0.732) achieved the highest rank in the questionnaire survey. In addition, the case study represents that the construction industry can benefit from BIM-based project management. The BIM implementation can shorten the design process by over 50% and save up to 1.5 weeks by minimising idling time. By applying BIM, it is possible to avoid a price rise of roughly 2.5% and a delay of about 11.9% of the original contract period.
Practical implications
The significance of the results goes beyond the direct advantages of the project's achievements. The successful integration of BIM as a lean management tool in Bangladesh's construction sector suggests transformative potential for the industry. The enhanced coordination and decreased errors point to a future where construction projects can achieve higher levels of precision and reliability. The improved efficiency observed implies a more sustainable and cost-effective future for construction projects in the region.
Originality/value
The research provides a unique perspective on the impact of BIM implementation on project outcomes. It includes a comprehensive survey on BIM adoption as a lean management tool, gathering real-world experiences from construction professionals in Bangladesh. The case study explores the practical implications and advantages of implementing BIM in construction projects. By comparing conventional methods with BIM-based approaches and utilising BIM software, the study contributes value to the construction sector.
Details
Keywords
Jhumana Akter, Mobasshira Islam and Shuvo Dip Datta
Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This…
Abstract
Purpose
Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This study aims to determine suitable material and optimum thickness for the insulation layer considering both operational and embodied factors by a comprehensive assessment of the energy, economic and environmental (3E) parameters.
Design/methodology/approach
First, the energy model of an existing building was created by using Autodesk Revit software according to the as-built floor layout to evaluate the impact of five alternative insulating materials in varying thickness values. Second, using the results derived from the model, a thorough evaluation was conducted to ascertain the optimal insulation material and thickness through individual analysis of 3E factors, followed by a comprehensive analysis considering the three aforementioned factors simultaneously.
Findings
The findings indicated that polyurethane with 13 cm thickness, rockwool with 10 cm thickness and EPS with 20 cm thickness were the best states based on energy consumption, cost and environmental footprint, respectively. After completing the 3E investigation, the 15-cm-thick mineral wool insulation was presented as the ideal state.
Practical implications
This study explores how suitable material and thickness of insulating material can be determined in advance during the design phase of a building, which is a lot more accurate and cost-effective than applying insulating materials by assumed thickness in the construction phase.
Originality/value
To the best of the authors’ knowledge, this paper is unique in investigating the advantages of using thermally insulating materials in the context of a mosque structure, taking into account its distinctive attributes that deviate from those of typical buildings. Furthermore, there has been no prior analysis of the cost and sustainability implications of these materials concerning the characteristics of subtropical monsoon climate.
Details
Keywords
Nadira Islam Nila, Jhumana Akter and Md. Mehrab Hossain
Change orders are a typical occurrence in building projects. Change orders indirectly affect labor productivity, resulting in a significant delay in the completion of a building…
Abstract
Purpose
Change orders are a typical occurrence in building projects. Change orders indirectly affect labor productivity, resulting in a significant delay in the completion of a building project. Change orders cause labor productivity losses that are difficult to describe, establish and account for contractors and subcontractors. This study aimed to look at the influence of change orders on labor productivity and develop methods to mitigate their adverse effects.
Design/methodology/approach
To assess the change orders' impact on productivity levels a system dynamic model was developed and devise ways were developed to counteract these negative impacts in this research. The impact of change orders on labor productivity and project time was then controlled using techniques established. Finally, a case study of KUET's hall extension was chosen, and the model and principles developed were implemented.
Findings
This study established that if the project delivery date is set and change orders are occurring often, labor productivity will be impacted. With adequate monitoring and supplemental management techniques, it can be reduced by prolonging the project.
Originality/value
The developed policies aid to mitigate the effect of change orders on labor productivity.
Details
Keywords
Tamanna Islam Meem, Md. Mehrab Hossain and Jhumana Akter
In comparison to other industries, the construction industry is one of the most dangerous industries. Behavior-based safety (BBS) is a common and useful technique for risk…
Abstract
Purpose
In comparison to other industries, the construction industry is one of the most dangerous industries. Behavior-based safety (BBS) is a common and useful technique for risk indicator processing. Almost all studies are based on the BBS checklist, but very few of them focus on the increasing dangers faced by construction workers and the important factors that lead to accidents. This research represents a risk spatiotemporal analysis and visual tracking approach based on BBS and Building Information Modeling (BIM).
Design/methodology/approach
After the literature review, a BBS checklist was developed. Then a survey was conducted based on the BBS checklist and the temporal evolution of risks has been completed. After that, managing the risk with the automatic rule checking (ARC) system using BIM was conducted simultaneously to develop a framework by conducting a case study.
Findings
Based on the grey clustering analysis, this work provides a temporal evolution analysis approach for dynamic analyzing BBS risk. According to the grey relational analysis (GRA) data, the main key factor of risk was the missing guardrail/handrail system. After that, a case study was performed and the system automatically warn in the preconstruction phase that the barrier is missing as the system benefits.
Originality/value
A systematic framework has been provided for risk analysis through which high health and safety performance outcomes can be achieved on construction projects. This study will assist design engineers in addressing the potential danger to employees during the preconstruction stage and monitoring dynamic changes in risk on any construction site.
Details