Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 January 2024

Hsin-Yi Liu and Jhao-Ying Wu

The theoretical findings serve as a foundation for further research into understanding sulfide-based solid-state electrolytes, ultimately advancing the progress of all-solid-state…

50

Abstract

Purpose

The theoretical findings serve as a foundation for further research into understanding sulfide-based solid-state electrolytes, ultimately advancing the progress of all-solid-state batteries.

Design/methodology/approach

The electronic properties of Li7P3S11 are thoroughly explored through first-principles calculations.

Findings

This investigation encompasses the intricate atom-dominated valence and conduction bands, spatial charge density distribution and the breakdown of atom and orbital contributions to van Hove singularities. Additionally, the compound’s wide and discrete energy spectra reflect the substantial variations in bond lengths and its highly anisotropic geometric structure. The complex and nonuniform chemical environment indicates the presence of intricate hopping integrals.

Originality/value

This study provides valuable insights into the critical multiorbital hybridizations occurring in the Li-S and P-S chemical bonds. To validate the theoretical predictions, experimental techniques can be employed. By combining theoretical predictions with experimental data, a comprehensive understanding of the geometric and electronic characteristics of Li7P3S11 can be achieved.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 1 of 1
Per page
102050