Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 14 February 2019

Xiaobo Wang, Zhipeng Li, Wen Zhan, Jesong Tu, Xiaohua Zuo, Xiangyi Deng and Boyi Gui

This study aims to expand the reliability and special functions of lightweight materials for high-end equipment and green manufacturing, so that it is the first such research to…

217

Abstract

Purpose

This study aims to expand the reliability and special functions of lightweight materials for high-end equipment and green manufacturing, so that it is the first such research to carry out nano-composite technology of nickel-coated carbon nanotubes (Ni-CNTs)-based titanium-zirconium chemical conversion on aluminum alloy substrate.

Design/methodology/approach

Corrosion behavior of various coatings was investigated using dropping corrosion test, linear polarization and electrochemical impedance spectroscopy. The results showed that the corrosion resistance of the nano-composite conversion coatings was significantly improved to compare with the conventional titanium-zirconium conversion coating. The morphology and microdomain characteristics of the nano-composite conversion coatings were characterized by SEM/eds/EPMA, which indicated that the CNT or Ni-CNTs addition promoting the integrity coverage of coatings in a short time.

Findings

Surface morphology of titanium-zirconium (Ti-Zr)/Ni-CNT specimens exhibited smooth, compact and little pores. The nano-composite conversion coatings are mainly composed of Al, O, C and Ti elements and contain a small amount of F and Zr elements, which illuminated that CNT or Ni-CNT addition could co-deposit with aluminum and titanium metal oxides.

Originality/value

The study of corrosion resistance of nano-composite conversion coatings and the micro-zone film-formation characteristics would be provided theoretical support for the development of basic research on surface treatment of aluminum alloys.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 1 of 1
Per page
102050