Jesús Matesanz-García, Tommaso Piovesan and David G. MacManus
Novel aircraft propulsion configurations require a greater integration of the propulsive system with the airframe. As a consequence of the closer integration of the propulsive…
Abstract
Purpose
Novel aircraft propulsion configurations require a greater integration of the propulsive system with the airframe. As a consequence of the closer integration of the propulsive system, higher levels of flow distortion at the fan face are expected. This distortion will propagate through the fan and penalize the system performance. This will also modify the exhaust design requirements. This paper aims to propose a methodology for the aerodynamic optimization of the exhaust for novel embedded propulsive systems. To model the distortion transfer, a low order throughflow fan model is included.
Design/methodology/approach
As the case study a 2D axisymmetric aft-mounted annular boundary layer ingestion (BLI) propulsor is used. An automated computational fluid dynamics approach is applied with a parametric definition of the design space. A throughflow body force model for the fan is implemented and validated for 2D axisymmetric and 3D flows. A multi-objective optimization based on evolutionary algorithms is used for the exhaust design.
Findings
By the application of the optimization methodology, a maximum benefit of approximately 0.32% of the total aircraft required thrust was observed by the application of compact exhaust designs. Furthermore, for the embedded system, it is observed that the design of the compact exhaust and the nacelle afterbody have a considerable impact on the aerodynamic performance.
Originality/value
This paper presents a novel approach for the exhaust design of embedded propulsive systems in novel aircraft configurations. To the best of the authors’ knowledge, this is the first detailed optimization of the exhaust system on an annular aft-mounted BLI propulsor.
Details
Keywords
Fernando Tejero, David MacManus, Jesús Matesanz García, Avery Swarthout and Christopher Sheaf
Relative to in-service aero-engines, the bypass ratio of future civil architectures may increase further. If traditional design rules are applied to these new configurations and…
Abstract
Purpose
Relative to in-service aero-engines, the bypass ratio of future civil architectures may increase further. If traditional design rules are applied to these new configurations and the housing components are scaled, then it is expected that the overall weight, nacelle drag and the effects of aircraft integration will increase. For this reason, the next generation of civil turbofan engines may use compact nacelles to maximise the benefits from the new engine cycles. The purpose of this paper is to present a multi-level design and optimisation process for future civil aero-engines.
Design/methodology/approach
An initial set of multi-point, multi-objective optimisations for axisymmetric configurations are carried out to identify the trade-off between intake and fancowl bulk parameters of highlight radius and nacelle length on nacelle drag. Having identified the likely optimal part of the design space, a set of computationally expensive optimisations for three-dimensional non-axisymmetric configurations is performed. The process includes cruise- and windmilling-type operating conditions to ensure aerodynamic robustness of the downselected configurations.
Findings
Relative to a conventional aero-engine nacelle, the developed process yielded a compact aero-engine configuration with mid-cruise drag reduction of approximately 1.6% of the nominal standard net thrust.
Originality/value
The multi-point, multi-objective optimisation is carried out with a mixture of regression and classification functions to ensure aerodynamic robustness of the downselected configurations. The developed computational approach enables the optimisation of future civil aero-engine nacelles that target a reduction of the overall fuel consumption.