Jeonghwan Jeon and Yongyoon Suh
Using the large database of patent, the purpose of this paper is to structure a technology convergence network using various patent network analysis for integrating different…
Abstract
Purpose
Using the large database of patent, the purpose of this paper is to structure a technology convergence network using various patent network analysis for integrating different results according to network characteristics.
Design/methodology/approach
The patent co-class analysis and the patent citation analysis are applied to discover core safety fields and technology, respectively. In specific, three types of network analysis, which are centrality analysis, association rule mining analysis and brokerage network analysis, are applied to measure the individual, synergy and group intensity.
Findings
The core safety fields derived from three types of network analysis used by different nature of data algorithms are compared with each other to understand distinctive meaning of cores of patent class such as medical safety, working safety and vehicle safety, differentiating network structure. Also, to be specific, the authors find the detailed technology contained in the core patent class using patent citation network analysis.
Practical implications
The results provide meaningful implications to various stakeholders in organization: safety management, safety engineering and safety policy. The multiple patent network enables safety manager to identify core safety convergence fields and safety engineers to develop new safety technology. Also, in the view of technology convergence, the strategy of safety policy can be expanded to collaboration and open innovation.
Originality/value
This is the initial study on applying various network analysis algorithms based on patent data (class and citation) for safety management. Through comparison among network analysis techniques, the different results are identified and the collective decision making on finding core of safety technology convergence is supported. The decision maker can obtain the various perspectives of tracing technology convergence.
Details
Keywords
Geetha Selvaraj and Jeonghwan Jeon
For a nation to become a superpower, it's scientific and technological advancement is essential. Each country is exploring how to improve themselves in terms of science and…
Abstract
Purpose
For a nation to become a superpower, it's scientific and technological advancement is essential. Each country is exploring how to improve themselves in terms of science and technology. The authors analyzed the innovation capabilities of 35 OECD countries that have not recently joined Lithuania.
Design/methodology/approach
In recent years, a lot of research work has been done on trapezoidal interval type-2 fuzzy sets (TIT-2 FS), and many research works have been published. The trapezoidal interval type-2 fuzzy set helps effectively to represent the uncertainty comparatively than the type-1 fuzzy set. Taking advantage of this effectiveness, the authors extend the best multi-criteria decision making method (MCDM) for trapezoidal interval type-2 fuzzy sets. Here, ELimination and Choice Expressing REality III (ELECTRE III) method in the trapezoidal interval type-2 fuzzy set environment is proposed.
Findings
This analysis helps to the OECD countries to develop their level of innovation in the criteria. The authors are making this evaluation for the year 2018 based on the 31 criteria. Application of the proposed method expressed by evaluation of the national innovation capability problem. Based on the obtained results, the top five countries are United States, Switzerland, Canada, Germany and Japan.
Originality/value
The authors collected required data from different available data sources like OECD, IMD, USPTO, ITU and surveyed data reported by KISTEP. After collecting all the data from different sources, the authors calculated the standard values as KISTEP. After converting the standard values into trapezoidal interval type-2 fuzzy values, the authors construct a decision matrix based on these values. Then, the authors determined the possibility mean values and preference. Then, they calculated the concordance and discordance credibility degree values. Finally, they ranked OECD countries by the net credibility degree. The results are computed by using the MATLAB software.