Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 6 June 2023

Guilherme Tolentino, Guillaume Parent, Olivier Ninet, Mathieu Rossi, Jean Vianei Leite and Jonathan Blaszkowski

The horizontal rotational single-sheet tester (RSST) suffers from weaknesses such as the reduced size of test samples, measurement disturbances due to magnetic flux leakage and…

31

Abstract

Purpose

The horizontal rotational single-sheet tester (RSST) suffers from weaknesses such as the reduced size of test samples, measurement disturbances due to magnetic flux leakage and nonhomogeneity of field in the measurement area. Although the vertical RSST allows to overcome the first two aforementioned drawbacks, the heterogeneity of the field in the test sample remains an issue. In addition, there is still a lack of device standardization to ensure test repeatability, as already is well established with the Epstein frame. This paper aims to investigate the influence of several parameters on the field homogeneity in the test sample.

Design/methodology/approach

A fully 3D finite element model of a vertical RSST is developed and used to perform a sensibility study on several geometrical parameters.

Findings

The influence of several parameters on the field homogeneity in the test sample, such as the geometrical dimensions of the yokes, the presence or not of holes drilled inside the test sample for B-coil placement as well as the size of the H-coils and B-coils, is addressed.

Originality/value

It is expected that this study will contribute to the optimization and standardization vertical RSSTs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 16 April 2018

Marina Tsili, Eleftherios I. Amoiralis, Jean Vianei Leite, Sinvaldo R. Moreno and Leandro dos Santos Coelho

Real-world applications in engineering and other fields usually involve simultaneous optimization of multiple objectives, which are generally non-commensurable and conflicting…

147

Abstract

Purpose

Real-world applications in engineering and other fields usually involve simultaneous optimization of multiple objectives, which are generally non-commensurable and conflicting with each other. This paper aims to treat the transformer design optimization (TDO) as a multiobjective problem (MOP), to minimize the manufacturing cost and the total owing cost, taking into consideration design constraints.

Design/methodology/approach

To deal with this optimization problem, a new method is proposed that combines the unrestricted population-size evolutionary multiobjective optimization algorithm (UPS-EMOA) with differential evolution, also applying lognormal distribution for tuning the scale factor and the beta distribution to adjust the crossover rate (UPS-DELFBC). The proposed UPS-DELFBC is useful to maintain the adequate diversity in the population and avoid the premature convergence during the generational cycle. Numerical results using UPS-DELFBC applied to the transform design optimization of 160, 400 and 630 kVA are promising in terms of spacing and convergence criteria.

Findings

Numerical results using UPS-DELFBC applied to the transform design optimization of 160, 400 and 630 kVA are promising in terms of spacing and convergence criteria.

Originality/value

This paper develops a promising UPS-DELFBC approach to solve MOPs. The TDO problems for three different transformer specifications, with 160, 400 and 630 kVA, have been addressed in this paper. Optimization results show the potential and efficiency of the UPS-DELFBC to solve multiobjective TDO and to produce multiple Pareto solutions.

Access Restricted. View access options
Article
Publication date: 11 November 2013

Leandro dos Santos Coelho, Viviana Cocco Mariani, Marsil de Athayde Costa e Silva, Nelson Jhoe Batistela and Jean Vianei Leite

The purpose of this paper is to introduce a chaotic harmony search (CHS) approach based on the chaotic Zaslavskii map to parameters identification of Jiles-Atherton vector…

210

Abstract

Purpose

The purpose of this paper is to introduce a chaotic harmony search (CHS) approach based on the chaotic Zaslavskii map to parameters identification of Jiles-Atherton vector hysteresis model.

Design/methodology/approach

In laminated magnetic cores when the magnetic flux rotates in the lamination plane, one observes an increase in the magnetic losses. The magnetization in these regions is very complex needing a vector model to analyze and predict its behavior. The vector Jiles-Atherton hysteresis model can be employed in rotational flux modeling. The vector Jiles-Atherton model needs a set of five parameters for each space direction taken into account. In this context, a significant amount of research has already been undertaken to investigate the application of metaheuristics in solving difficult engineering optimization problems. Harmony search (HS) is a derivative-free real parameter optimization metaheuristic algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. In this paper, a CHS approach based on the chaotic Zaslavskii map is proposed and evaluated.

Findings

The proposed CHS presents an efficient strategy to improve the search performance in preventing premature convergence to local minima when compared with the classical HS algorithm. Numerical comparisons with results using classical HS, genetic algorithms (GAs), particle swarm optimization (PSO), and evolution strategies (ES) demonstrated that the performance of the CHS is promising in parameters identification of Jiles-Atherton vector hysteresis model.

Originality/value

This paper presents an efficient CHS approach applied to parameters identification of Jiles-Atherton vector hysteresis model.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3
Per page
102050