The purpose of this manuscript is to present a novel, compact and ultra-thin “3”-shaped monopole antenna for wireless operations in the laptop computer. The thickness of the…
Abstract
Purpose
The purpose of this manuscript is to present a novel, compact and ultra-thin “3”-shaped monopole antenna for wireless operations in the laptop computer. The thickness of the antenna is only 0.2 mm and is designed using only a pure copper strip of size 17.5 × 6 mm2.
Design/methodology/approach
The simple structure of the proposed antenna consists of two monopole radiating strips, namely, AC and CD and an open-ended rectangular tuning stub BE of length 9mm.
Findings
This structure inspires two resonating modes at 3.45 and 5.5 GHz and achieves the measured impedance band width as 20% (3.21-3.91) GHz in lower band (F_l) and 15% (5.05-5.85) GHz in the upper band (F_u) for voltage standing wave ratio < 2. These two bands cover 5GHz wireless local area network (WLAN) and 3.3-3.6GHz (sub 6GHz) 5G bands. The measured radiation performance including, nearly omnidirectional radiation patterns, a stable gain of around 5 dBi and excellent efficiency around 90% in both operating bands have been achieved. Furthermore, a simplified equivalent circuit model has been derived and its simulation is performed. The simulated and measured results are in good agreement, which demonstrates the applicability of the antenna structure for WiMAX/WLAN operations in the prominent ultra-thin laptop computers.
Originality/value
The proposed antenna is designed without using any reactive elements, vias or matching circuits for excitation of WLAN and 5G bands in the laptop computers. The design also does not require any additional ground for mounting the antenna. The proposed antenna has a very low profile, is ultra-thin, cost-effective, easy to manufacture and can be easily embedded inside next generation laptop computers.
Details
Keywords
Jayshri Sharad Kulkarni and Raju Seenivasan
This paper aims to present a triple-band monopole antenna design of 0.2-mm thickness with an overall dimension of 21 × 8 mm2 for wireless local area network (WLAN)/worldwide…
Abstract
Purpose
This paper aims to present a triple-band monopole antenna design of 0.2-mm thickness with an overall dimension of 21 × 8 mm2 for wireless local area network (WLAN)/worldwide interoperability for microwave access (WiMAX) multiple input and multiple output (MIMO) applications in the laptop computer.
Design/methodology/approach
It comprises three monopole radiating elements, namely, strip AD (inverted C), strip EG (inverted J) and strip FI (inverted U) along with two rectangular open-end tuning stubs, namely, “m” and “n” of size 1.5 × 0.9 mm2 and 1.8 × 0.9 mm2, respectively. The proposed structure is compact, cost-effective and easy to integrate inside the laptop computers.
Findings
This structure excites three WLAN (2.4/5.2/5.8 GHz) and three WiMAX (2.3/3.3/5.5 GHz) bands. The proposed antenna array elucidates that it has measured −10dB impedance bandwidth of 11.86 per cent (2.22-2.50) GHz in a lower band (f_l), 6.83 per cent (3.25-3.48) GHz in medium band (f_m) and 16.84 per cent (5.00-5.92) GHz in upper band (f_u). The measured gain and radiation efficiency are above 3.64dBi and 75 per cent, respectively, and isolation better than −20dB. The envelope correlation coefficient (ECC) is less than 0.004. The simulated and measured results are in good concurrence, which confirms the applicability of the proposed antenna array for MIMO applications in the laptop computer.
Originality/value
The proposed antenna is designed without using vias, reactive elements and matching circuits for excitation of WLAN/WiMAX bands in the laptop computers. The design also does not require any additional ground for mounting the antenna. Further, the antenna array, formed by using the same antenna design, does not need additional isolating elements and is designed in such a way that the system ground itself acts as an isolating element. The proposed antenna has a low profile and is ultra-thin, cost-effective and easy to manufacture and can be easily embedded inside the next-generation laptop computers.