Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 20 June 2016

Jatender Pal Singh, Pulak M. Pandey and Anita Kamra Verma

Scaffolds are essentially required to have open porous structure for facilitating bone to grow. They are generally placed on those bone defective/fractured sites which are more…

734

Abstract

Purpose

Scaffolds are essentially required to have open porous structure for facilitating bone to grow. They are generally placed on those bone defective/fractured sites which are more prone to compressive loading. Open porous structure lacks in strength in comparison to solid. Selective laser sintering (SLS) process is prominently used for fabrication of polymer/composite scaffolds. So, this paper aims to study for fabrication of three-dimensional open porous scaffolds with enhanced strength, process parameters of SLS of a biocompatible material are required to be optimized.

Design/methodology/approach

Regular open porous structures with suitable pore size as per computer-aided design models were fabricated using SLS. Polyamide (PA-2200) was used to fabricate the specimen/scaffold. To optimize the strength of the designed structure, response surface methodology was used to design the experiments. Specimens as per ASTM D695 were fabricated using SLS and compressive testing was carried out. Analysis of variance was done for estimating contribution of individual process parameters. Optimized process parameters were obtained using a trust region algorithm and correlated with experimental results. Accuracy of the fabricated specimen/scaffold was also assessed in terms of IT grades. In vitro cell culture on the fabricated structures confirmed the biocompatibility of polyamide (PA-2200).

Findings

Optimized process parameters for open cell process structures were obtained and confirmed experimentally. Laser power, hatch spacing and layer thickness have contributed more in the porous part’s strength than scan speed. The accuracy of the order of IT16 has been found for all functional dimensions. Cell growth and proliferation confirmed biocompatibility of polyamide (PA-2200) for scaffold applications.

Originality/value

This paper demonstrates the biocompatibility of PA-2200 for scaffold applications. The optimized process parameters of SLS process for open cell structure having pore size 1.2 × 1.2 mm2 with strut diameter of 1 mm have been obtained. The accuracy of the order of IT16 was obtained at the optimized process factors.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 2 January 2018

Jatender Pal Singh and Pulak Mohan Pandey

The requirements of open cell porous regular interconnected metallic structure (OCPRIMS) in applications such as heat exchangers, sound absorption, fluid flow control, spark…

181

Abstract

Purpose

The requirements of open cell porous regular interconnected metallic structure (OCPRIMS) in applications such as heat exchangers, sound absorption, fluid flow control, spark arresters and biocompatible inserts have been increased. As per available technology in the present scenario, only the metallic-based rapid prototyping (RP) machines can guarantee fabrication of OCPRIMS. Metal-based RP machines are capital-intensive. So, this study aims to develop a technique for fabrication of OCPRIMS economically using three-dimensional printing (3 DP) and pressureless sintering.

Design/methodology/approach

Three computer-aided design (CAD) models of varying designed interconnected porosity 73, 70 and 60 per cent were modeled to target metallic porosity 27, 30 and 40 per cent. The same were fabricated with ceramic-based powder using 3 DP. Thereafter, spherical bronze powder with average size of 200 µm was filled and sintered in pressureless manner under inert atmosphere of argon. After sintering, the specimens were cleaned with the help of pricking needles and high-pressure water. It flushed the burnt ceramic powder and allowed metallic portion to remain intact. The obtained specimens were inverse of CAD/3 DP models. The dimensional measurement at different stages of fabrication was carried out to find shrinkage. Sintered density and interconnected porosity were measured using Archimedes’ principle. The characterization of the fabricated specimens was done with the help of microstructure analysis, scanning electron microscopy and energy dispersive x-ray analysis. Mechanical properties were assessed using compressive, tensile and Charpy tests.

Findings

The feasibility has been explored successfully to fabricate OCPRIMS of phosphor bronze using 3 DP and pressureless sintering process. Interconnected porosity of 51.45, 56.45, 64.09 per cent of final metallic specimens has been observed against the targeted 27, 30 and 40 per cent. The increase in pore dimensions up to 19.13 per cent and shrinkage up to 5.44 per cent of outer dimensions were found to be the main causes of increase in interconnected porosity level. The characterization results exhibit the behavior of pressureless sintering process and stability of the fabricated specimens. Mechanical properties of fabricated structures are found to be dependent on porosity and strut diameter. Compressive and tensile strength decrease with the increase in porosity for strut diameter less than 1 mm, whereas they increase with the increase in strut diameter of 1 mm or more. A similar trend has been observed for impact strength also.

Originality/value

This paper explores the feasibility to fabricate OCPRIMS economically using 3 DP and pressureless sintering process.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2
Per page
102050