Evangelos Liasi, Ruxu Du, Dan Simon, Jasmina Bujas‐Dimitrejevic and Frank Liburdi
This paper presents an experimental study on needle heating in sewing heavy materials such as upholstery fabrics. In the experiments, infrared (IR) radiometry, high speed line…
Abstract
This paper presents an experimental study on needle heating in sewing heavy materials such as upholstery fabrics. In the experiments, infrared (IR) radiometry, high speed line scanning IR radiometry, and high speed IR radiometry are used to obtain thermal images of the needle during sewing. In particular, IR radiometry was used in lower speed sewing (approximately 500rpm). High speed IR and high speed line scanning IR radiometry were used for medium speed sewing (1,000‐2,000rpm). Using Taguchi’s design of experiment method, the effects of various factors are studied including needle conditions (sharp or blunt), sewing speeds, number of stitches per inch, material being sewn, and thread tension. It is found that even with air vortex cooling the needle may still reach high enough temperatures that may affect the sewing quality and even cause thread breakage. This was confirmed via a thread tensile testing experiment. An empirical model of the mean needle temperature is also proposed and tested.