Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 14 January 2019

Jaroslaw Stanislawski

The purpose of this paper is to present a simulation method applied for investigation of helicopter ground resonance phenomenon.

159

Abstract

Purpose

The purpose of this paper is to present a simulation method applied for investigation of helicopter ground resonance phenomenon.

Design/methodology/approach

The considered physical model of helicopter standing on ground with rotating rotor consists of fuselage and main transmission gear treated as stiff bodies connected by elastic elements. The fuselage is supported on landing gear modeled by spring-damper units. The main rotor blades are treated as set of elastic axes with lumped masses distributed along blade radius. Due to Galerkin method, parameters of blades motion are assumed as a combination of bending and torsion eigen modes. A Runge–Kutta method is applied to solve equations of motions of rotor blades and helicopter fuselage.

Findings

The presented simulation method may be applied in preliminary stage of helicopter design to avoid ground resonance by proper selection of landing gear units and blade damper characteristics.

Practical implications

Ground resonance may occur in form of violently increasing mutual oscillations of helicopter fuselage and lead-lag motion of rotor blades. According to changes of stiffness and damping characteristics, simulations show stable behavior or arising oscillations of helicopter. The effects of different blade balance or defect of blade damper are predicted.

Originality/value

The simulation method may help to determine the envelope of safe operation of helicopter in phase of take-off or landing. The effects of additional disturbances as results of blades pitch control as swashplate deflection are introduced.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 1 of 1
Per page
102050