Search results
1 – 10 of 12Dorota Szwagierczak, Jan Kulawik, Beata Synkiewicz and Agata Skwarek
The work was aimed at preparation of green tapes based on a new material Bi2/3CuTa4O12, to achieve spontaneously formation of an internal barrier layer capacitor (IBLC)…
Abstract
Purpose
The work was aimed at preparation of green tapes based on a new material Bi2/3CuTa4O12, to achieve spontaneously formation of an internal barrier layer capacitor (IBLC), fabrication of multilayer elements using low temperature cofired ceramics (LTCC) technology and their characterization.
Design/methodology/approach
The study focused on tape casting, lamination and co-sintering procedures and dielectric properties of Bi2/3CuTa4O12 multilayer capacitors. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies of the ceramic elements were performed. Impedance spectroscopy was used for characterization of dielectric properties in the frequency range of 0.1 Hz to −2 MHz and in the temperature range from −55 to 400°C. DC conductivity was investigated in the temperature range 20 to 740°C.
Findings
SEM observations revealed a good compatibility of the applied commercial Pt paste with the ceramic layers. The EDS microanalysis showed a higher content of oxygen at grain boundaries. The dominant dielectric response, which was recorded in the low frequency range and at temperatures above 0°C, was attributed to grain boundaries. The dielectric response at low temperatures and/or high frequencies was related to grains. The fabricated multilayer capacitors based on Bi2/3CuTa4O12 exhibited a high specific capacitance.
Originality/value
A new material Bi2/3CuTa4O12 was applied for preparation of green ceramic tapes and utilized for fabrication of multilayer ceramic capacitors using the LTCC technology. This material belongs to the group of high permittivity nonferroelectric compounds with a complex perovskite structure of CaCu3Ti4O12, that causes the spontaneously formation of IBLCs.
Details
Keywords
Beata Synkiewicz-Musialska, Dorota Szwagierczak, Jan Kulawik and Elżbieta Czerwińska
This paper aims to report on fabrication procedure and presents microstructure and dielectric behaviour of LiZn0.92Cu0.08PO4 ceramic material with Li2CO3 as a sintering aid.
Abstract
Purpose
This paper aims to report on fabrication procedure and presents microstructure and dielectric behaviour of LiZn0.92Cu0.08PO4 ceramic material with Li2CO3 as a sintering aid.
Design/methodology/approach
Substrates based on LiZn0.92Cu0.08PO4 with Li2CO3 addition were prepared via solid-state synthesis, doping, milling, pressing and sintering. Characterization of the composition, microstructure and dielectric properties was performed using X-ray diffractometry, energy dispersive spectroscopy, scanning electron microscopy, impedance spectroscopy in the 100 Hz to 2 MHz range and time-domain spectroscopy in the 0.1–3 THz range.
Findings
Doped LiZnPO4 ceramic, which exhibits a low dielectric constant of 5.9 at 1 THz and low sintering temperature of 800 °C, suitable for low temperature co-fired ceramics (LTCC) technology, was successfully prepared. However, further studies are needed to lower dielectric losses by optimising the doping level, synthesis and sintering conditions.
Originality/value
Search for new low dielectric constant materials applicable in LTCC technology and optimization of processing are essential tasks for developing modern microwave circuits. The dielectric characterization of doped LiZnPO4 ceramic in the terahertz range, which was performed for the first time, is crucial for potential millimetre-wave applications of this substrate material.
Details
Keywords
Jan Kulawik, Dorota Szwagierczak and Agata Skwarek
The purpose of this study was to develop fabrication procedure of multilayer varistors based on doped ZnO and to investigate their microstructure and electrical properties.
Abstract
Purpose
The purpose of this study was to develop fabrication procedure of multilayer varistors based on doped ZnO and to investigate their microstructure and electrical properties.
Design/methodology/approach
Two ceramic compositions based on ZnO doped with Bi2O3, Sb2O3, CoO, MnO, Cr2O3, B2O3, SiO2 and Pr2O3 were used for tape casting of varistor tapes. Multilayer varistors were prepared by stacking of several green sheets with screen printed Pt electrodes, isostatic lamination and firing at 1,050-1,100°C. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) studies were carried out to examine the microstructure and elemental composition of the varistors. Current-voltage characteristics were measured in the temperature range from −20 to 100°C.
Findings
The desired compact and fine-grained microstructure of multilayer varistors and nonlinear current-voltage characteristics were attained as a result of the applied fabrication procedure. The breakdown voltage of the varistors is 33-35 V and decreases slightly in the temperature range from −20 to 100°C. The nonlinearity coefficient changes from 14 to 23 with rising measurement temperature.
Originality/value
New improved formulations of varistor ceramic foils based on doped ZnO were developed using tape casting method and applied for fabrication of multilayer varistors with good electrical characteristics. The influence of temperature in the range from −20 to 100°C on the varistor parameters was studied.
Details
Keywords
Beata Synkiewicz, Dorota Szwagierczak and Jan Kulawik
The paper aims to report on fabrication procedure and present microstructure and dielectric behavior of multilayer porous low-temperature cofired ceramic (LTCC) structures based…
Abstract
Purpose
The paper aims to report on fabrication procedure and present microstructure and dielectric behavior of multilayer porous low-temperature cofired ceramic (LTCC) structures based on glass-cordierite and glass-alumina.
Design/methodology/approach
The LTCC structures were created as multi-layered composites with dense external layers and inner layers with intentionally introduced porosity. Two preparation methods were applied – subsequent casting of both kinds of slurries and conventional isostatic lamination of dried green tapes arranged in the designed order. Optical microscope observations were carried out to analyze the microstructure of green and fired multilayer structures and pore concentration. To evaluate the adhesion strength of the composite layers, pull test was performed. Dielectric behavior of the composites was studied in the frequency range 50 kHz-2 MHz.
Findings
The fabricated porous LTCC structures showed dielectric constant of 3-5.6. The lowest dielectric constant was attained for glass-cordierite composite made by the conventional tape casting/lamination/firing method from slurry with 50 per cent graphite content. The samples prepared using multiple casting were of worse quality than those fabricated in conventional process, contained irregular porosity, showed tendency for deformation and delamination and exhibited a higher dielectric constant.
Originality/value
Search for new low dielectric constant materials applicable in LTCC technology and new methods of their fabrication is an important task for development of modern microwave circuits.
Details
Keywords
Wojciech Filipowski, Zbigniew Pruszowski, Krzysztof Waczynski, Piotr Kowalik and Jan Kulawik
The paper aims to present a research on the impact of the stabilization process of a thin metallic layer (Ni-P) produced on a ceramic surface (Al2O3) by means of electroless…
Abstract
Purpose
The paper aims to present a research on the impact of the stabilization process of a thin metallic layer (Ni-P) produced on a ceramic surface (Al2O3) by means of electroless metallization on its electric parameters and structure. On the basis of the research conducted, the existence of a relationship between resistance (R) and the temperature coefficient of resistance (TCR) of the test structure with a Ni-P alloy-based layer and the temperature of stabilization was proposed.
Design/methodology/approach
Metallic Ni-P layers were deposited on sensitized and activated substrates. Metallization was conducted in an aqueous solution containing two primary ingredients: sodium hypophosphite and nickel chloride. The concentration of both ingredients was (50-70) g/dm3. The process lasted 60 min, and the metallization bath pH was kept at 2.1-2.2, whereas the temperature was maintained at 363 K. The thermal stabilization process was conducted in different temperatures between 453 and 623 K. After the technological processes, the resistance and TCR of the test structures were measured with a micro ohmmeter. The composition and the morphology of the resistive layer of the structures examined was also determined.
Findings
The dependence of the resistance on the temperature of the stabilization process for the temperature range 553 to 623 K was described using mathematical relationships. The TCR of test resistors at the same thermal stabilization temperature range was also described using a mathematical equation. The measurements show that the resistive layer contains 82.01 at.% of nickel (Ni) and 17.99 at.% of phosphorus (P).
Originality/value
The results associate a surface morphology Ni-P alloy with the resistance and TCR according to temperature stabilization. The paper presents mathematical relationships that have not been described in the literature available.
Details
Keywords
Agata Skwarek, Jan Kulawik, Andrzej Czerwinski, Mariusz Pluska and Krzysztof Witek
The purpose of this study is to develop a testing method for tin pest in tin – copper (SnCu) alloys. Tin pest is the allotropic transformation of white β-tin (body-centered…
Abstract
Purpose
The purpose of this study is to develop a testing method for tin pest in tin – copper (SnCu) alloys. Tin pest is the allotropic transformation of white β-tin (body-centered tetragonal structure) into gray α-tin (diamond cubic structure) at temperatures < 13.2°C.
Design/methodology/approach
Bulk samples of Sn99Cu1 weight per cent (purity, 99.9 weight per cent) were cast in the form of roller-shaped ingots with a diameter of 1.0 cm and a height of 0.7 cm. The samples were then divided into four groups. The first group included samples artificially inoculated with α-tin powder. The second group was inoculated in the same way as the samples from the first group but additionally subjected to mechanical pressing. The third group of ingots was only subjected to mechanical pressing. The fourth group of samples consisted of as-received roller-shaped ingots.All samples were divided into two groups and kept either at −18°C or at −30°C for the low-temperature storage test. For tin pest identification, a visual inspection was made, using a Hirox digital microscope over 156 days at intervals not longer than 14 days. The plot of the transformation rate, presented as the average increase in the area of α-tin warts in time, was also determined. To demonstrate the differences between regions of β- and α-tin, scanning ion microscopy observations using the focused ion beam technique was performed.
Findings
The first symptoms of tin pest were observed for the inoculated, mechanically pressed samples stored at −18°C, as well as those at −30°C, after less than 14 days. In the first stage of transformation, the rate was higher at −30°C for some time but, after about 75 days of storage at sub-zero temperatures, the rate at −30°C became lower compared to the rate at −18°C. Inoculation via the application of substances which are structurally similar to α-tin was efficient for the proposed new approach of rapid testing only when applied with simultaneous mechanical pressing. Infection from pressed-in seeds, leading to conventional seeded growth, was more rapid than infection in contact with seeds (without mechanical pressing), where the transition mechanism was induced by the epitaxial growth of metastable ice.
Originality/value
The new rapid method for the diagnostic testing of the susceptibility of different SnCu alloys to tin pest in a period much shorter than 14 days (within single days for storage at −30°C) is proposed and described. The test procedure described in this paper produced results several times quicker than conventional procedures, which may take years. In effect, the behavior of tin alloys in the face of tin pest may be predicted much more easily and much earlier. The same procedure can be applied to other SnCu alloys used in electronics (and in other areas), if the test samples are prepared in a similar manner.
Details
Keywords
Jan Kulawik, Dorota Szwagierczak and Beata Synkiewicz
– This paper aims to fabricate and characterize ZnO-based multilayer varistors.
Abstract
Purpose
This paper aims to fabricate and characterize ZnO-based multilayer varistors.
Design/methodology/approach
Tape casting technique was utilized for preparation of multilayer varistors based on ZnO doped with Pr, Bi, Sb, Co, Cr, Mn and Si oxides. Scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) methods were used to study the microstructure, elemental and phase compositions, respectively, of the varistors. Dielectric properties were investigated by impedance spectroscopy. Current–voltage (I–U) dependences were measured to characterize nonlinear behavior of the fabricated varistors.
Findings
XRD, SEM and EDS studies revealed dense microstructure of ceramic layers with ZnO grains sized 1-4 μm surrounded by nanometric Bi-rich films, submicrometer Zn7Sb2O12 spinel grains and needle-shaped Pr3SbO7 crystallites. Praseodymium oxide was found to be very effective as an additive restricting the ZnO grain growth. I–U characteristics of the fabricated multilayer varistors were nonlinear, with the nonlinearity coefficients of 23-27 and 19-51 for the lower and higher Pr2O3 content, respectively. The breakdown voltages were 60-150 V, decreasing with increasing sintering temperature.
Originality/value
Low-temperature cofired ceramics technology enables attaining a significant progress in miniaturization of electronic passive components. Literature concerning application of this technology for multilayer varistors fabrication is limited. In the present work, the results of XRD, SEM and EDS studies along with the I–U and complex impedance dependences are analyzed to elucidate the origin of the observed varistor effect. The influence of sintering temperature and Pr2O3-doping level was investigated.
Details
Keywords
Agata Skwarek, Beata Synkiewicz, Jan Kulawik, Piotr Guzdek, Krzysztof Witek and Jacek Tarasiuk
The purpose of this paper is to assess the reliability of thermoelectric generators after ageing at elevated temperature and to determine the influence of the technology used…
Abstract
Purpose
The purpose of this paper is to assess the reliability of thermoelectric generators after ageing at elevated temperature and to determine the influence of the technology used (i.e. type of thermoelectric material, type of substrate and soldering technology) for thermogenerator (TGE) assembly.
Design/methodology/approach
In this paper, the Seebeck coefficient and the current voltage were measured for lead telluride doped with either manganese (PMT), germanium (PGT) or sulfur (PST) TGEs. The Seebeck coefficient measurements were taken at temperatures between 230 and 630 K.
Findings
The Seebeck coefficient determined for PMT, PGT and PST TGEs increases approximately linearly with increasing temperature and is greater by about 40 per cent for PST and about 30 per cent for PMT than in commercially available PbTe TGEs. The best outcome in terms of stability after long-term ageing was that of PMT material.
Originality/value
The choice of proper technology (i.e. thermoelectric materials, type of substrate and soldering technology) for the TGE assembly is essential for their functioning overtime and reliability.
Details
Keywords
Katarina Cvejin, Libu Manjakkal, Jan Kulawik, Krzysztof Zaraska and Dorota Szwagierczak
– This paper aims to investigate different properties of synthesized perovskite Sm0.9Sr0.1CoO3-δ and its potential for application in potentiometric oxygen sensors.
Abstract
Purpose
This paper aims to investigate different properties of synthesized perovskite Sm0.9Sr0.1CoO3-δ and its potential for application in potentiometric oxygen sensors.
Design/methodology/approach
The powder was obtained through solid-state reaction method and characterized by thermogravimetric/differential thermal analyzer and X-ray diffraction. It was used for both making a paste and pressing into rods for sintering. The prepared paste was deposited on alumina and yttria-stabilized zirconia substrates, by screen printing. Thick film conductivity, bulk conductivity and Seebeck coefficient of sintered rods were measured as a function of temperature. An oxygen concentration cell was fabricated with the screen-printed perovskite material as electrodes.
Findings
Electrical conductivity of the bulk sample and thick film increases with the increase in temperature, showing semiconductor-like behavior, which is also indicated by relatively high values of the measured Seebeck coefficient. Estimated values of the activation energy for conduction are found to be of the same magnitude as those reported in the literature for similar composition. An investigation of Nernstian behavior of the fabricated cell confirmed that Sm0.9Sr0.1CoO3-δ is a promising material for application in oxygen potentiometric sensors.
Originality/value
Gas sensor research is focused on the development of new sensitive materials. Although there is scarce information on SmCoO3-δ in the literature, it is mostly investigated for fuel cell applications. Results of this study imply that Sr-doped SmCoO3-δ is a good candidate material for oxygen potentiometric sensor.
Details
Keywords
Monika Zawadzka, Jan Kulawik, Dorota Szwagierczak and Krzysztof Zaraska
The purpose of this paper is to present fabrication process of volatile organic compounds (VOCs) sensors based on polypyrrole material deposited on different substrates and to…
Abstract
Purpose
The purpose of this paper is to present fabrication process of volatile organic compounds (VOCs) sensors based on polypyrrole material deposited on different substrates and to show and compare the responses of the produced sensors to different VOCs.
Design/methodology/approach
Polypyrrole sensing layers were prepared by in situ chemical polymerisation on two different substrates: alumina and poly(ethylene terephthalate) (PET). The time of the polymerisation was varied. After film deposition, an interdigitated electrode was screen-printed on the material deposited on the substrate.
Findings
It was demonstrated that both polymerisation time and substrate type provide means to vary the sensitivity of polypyrrole-based sensors to VOCs.
Practical implications
VOCs, which are released in manufacturing or use of various products and materials, pose a threat to the environment and human health. Therefore, measures must be taken to control their concentration both in indoor and outdoor air.
Originality/value
Deposition of a conductive polymer film on the substrate via in situ chemical polymerisation followed by screen-printing of an interdigitated electrode on the polymer surface offers a fast and an effective method of chemiresistor-type sensor fabrication.
Details