Jan Karthaus, Benedikt Groschup, Robin Krüger and Kay Hameyer
Due to the increasing amount of high power density high-speed electrical machines, a detailed understanding of the consequences for the machine’s operational behaviour and…
Abstract
Purpose
Due to the increasing amount of high power density high-speed electrical machines, a detailed understanding of the consequences for the machine’s operational behaviour and efficiency is necessary. Magnetic materials are prone to mechanical stress. Therefore, this paper aims to study the relation between the local mechanical stress distribution and magnetic properties such as magnetic flux density and iron losses.
Design/methodology/approach
In this paper, different approaches for equivalent mechanical stress criteria are analysed with focus on their applicability in electrical machines. Resulting machine characteristics such as magnetic flux density distribution or iron are compared.
Findings
The study shows a strong influence on the magnetic flux density distribution when considering the magneto-elastic effect for all analysed models. The influence on the iron loss is smaller due to a high amount of stress-independent eddy current loss component.
Originality/value
The understanding of the influence of mechanical stress on dimensions of electrical machines is important to obtain an accurate machine design. In this paper, the discussion on different equivalent stress approaches allows a new perspective for considering the magneto-elastic effect.
Details
Keywords
Jan Karthaus, Simon Steentjes, Nora Leuning and Kay Hameyer
The purpose of this paper is to study the variation of the specific iron loss components of electrical steel sheets when applying a tensile mechanical load below the yield…
Abstract
Purpose
The purpose of this paper is to study the variation of the specific iron loss components of electrical steel sheets when applying a tensile mechanical load below the yield strength of the material. The results provide an insight into the iron loss behaviour of the laminated core of electrical machines which are exposed to mechanical stresses of diverse origins.
Design/methodology/approach
The specific iron losses of electrical steel sheets are measured using a standardised single-sheet tester equipped with a hydraulic pressure cylinder which enables application of a force to the specimen under test. Based on the measured data and a semi-physical description of specific iron losses, the stress-dependency of the iron loss components can be studied.
Findings
The results show a dependency of iron loss components on the applied mechanical stress. Especially for the non-linear loss component and high frequencies, a large variation is observed, while the excess loss component is not as sensitive to high mechanical stresses. Besides, it is shown that the stress-dependent iron loss prediction approximates the measured specific iron losses in an adequate way.
Originality/value
New applications such as high-speed traction drives in electric vehicles require a suitable design of the electrical machine. These applications require particular attention to the interaction between mechanical influences and magnetic behaviour of the machine. In this regard, knowledge about the relation between mechanical stress and magnetic properties of soft magnetic material is essential for an exact estimation of the machine’s behaviour.
Details
Keywords
Jan Karthaus, Silas Elfgen and Kay Hameyer
Magnetic properties of electrical steel are affected by mechanical stress. In electrical machines, influences because of manufacturing and assembling and because of operation…
Abstract
Purpose
Magnetic properties of electrical steel are affected by mechanical stress. In electrical machines, influences because of manufacturing and assembling and because of operation cause a mechanical stress distribution inside the steel lamination. The purpose of this study is to analyse the local mechanical stress distribution and its consequences for the magnetic properties which must be considered when designing electrical machines.
Design/methodology/approach
In this paper, an approach for modelling stress-dependent magnetic material properties such as magnetic flux density using a continuous local material model is presented.
Findings
The presented model shows a good approximation to measurement results for mechanical tensile stress up to 100 MPa for the studied material.
Originality/value
The presented model allows a simple determination of model parameters by using stress-dependent magnetic material measurements. The model can also be used to determine a scalar mechanical stress distribution by using a known magnetic flux density distribution.
Details
Keywords
Andrzej Demenko, Anouar Belahcen, Kay Hameyer, Wojciech Pietrowski and Stefan Brock