Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 March 2018

Adam Marciniec, Jacek Pacana, Jadwiga Malgorzata Pisula and Pawel Fudali

This paper aims to present a comparison of numerical methods for determining the contact pattern of Gleason-type bevel gears. The mathematical model of tooth contact analysis and…

171

Abstract

Purpose

This paper aims to present a comparison of numerical methods for determining the contact pattern of Gleason-type bevel gears. The mathematical model of tooth contact analysis and the finite element method were taken into consideration. Conclusions have been drawn regarding the usefulness of the considered methods and the compatibility of results. The object of the analysis was a bevel gear characterised by an 18:43 gear ratio and arc tooth line, and manufactured according to the spiral generated modified-roll method.

Design/methodology/approach

The mathematical model of tooth contact analysis consists of both the mathematical model of tooth generating and the mathematical model of operating gear set. The first model is used to generate tooth flanks of the pinion and the ring gear in the form of grids of points. Then, such tooth surfaces are used for the tooth contact analysis performed with the other model. It corresponds to the no-load gear meshing condition. The finite element method model was built on the basis of the same tooth flanks obtained with the former model. The commercial finite element method software Abaqus was used to perform two instances of the contact analysis: a very light load, corresponding to the former no-load condition, and the operating load condition. The results obtained using the two models, in the form of the contact pattern for no-load condition, were compared. The effect of heavy load on contact pattern position, shape and size was shown and discussed.

Findings

The mathematical models correctly reproduce the shape, position and size of the contact pattern; thus, they can be reliably used to assess the quality of the bevel gear at the early stage of its design.

Practical implications

Determination of the correct geometry of the flank surfaces of the gear and pinion teeth through the observation of contact pattern is a fundamental step in designing of a new aircraft bevel gear.

Originality/value

A possibility of the independent use of the mathematical analysis of the contact pattern has been shown, which, thanks to the compatibility of the results, does not have to be verified experimentally.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 2 March 2015

Jadwiga Malgorzata Pisula and Mieczyslaw Plocica

– The purpose of this article is to present a method for the analysis of the quality of the bevel gear at the development level.

243

Abstract

Purpose

The purpose of this article is to present a method for the analysis of the quality of the bevel gear at the development level.

Design/methodology/approach

A non-commercial aircraft bevel gear design support system was developed. The system utilises matrix and vector calculi to model the technological machining systems and to analyse the contact of the designed pair. Both the technological model and the design model offer the possibility of manipulating the calculated parameters. This enables independent selection of the pinion/gear engagement, making it possible to achieved the desired contact pattern (its shape, position and size) and/or minimise motion transmission deviation. This article presents an analysis of the meshing of the aircraft transmission designed in two variants.

Findings

The newly developed non-commercial transmission design support system offers the capability to freely adjust mesh quality indicators. The first step is to perform automated technological calculations for a specific geometry of gear members, on the basis of which gear and pinion flanks are developed. Then, numerical models of tooth flanks are configured in the designed pair, and tooth mesh quality is verified. Quality indicators are provided in the form of summary contact pattern and the motion graph. In the subsequent step, changes are made to basic geometry of pinion tooth flank. After satisfactory mesh indicators have been reached, the transmission is tested for assembly errors and additional corrections are made to the geometry of the pinion tooth surface, as required. The above methodology guarantees that the assumed quality indicators are achieved on the physically cut transmission.

Practical implications

Fast preparation of the technology with guaranteed high mesh quality is a significant factor in the competitiveness of an industrial plant which implements a new bevel gear in its manufacturing activities.

Originality/value

The visualisation of the results of the use of the application allows the user to easily interpret the analysed contact pattern and take appropriate decisions as to the necessity of making corrections.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 2 of 2
Per page
102050