Noel Scott, Brent Moyle, Ana Cláudia Campos, Liubov Skavronskaya and Biqiang Liu
This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…
Abstract
This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.
Details
Keywords
Mengli Wu, Yilong Xu, Xuhao Wang, Hao Liu, Guanhao Li, Chengfa Wang, Yiran Cao and Zhiyong Guo
This paper aims to present the mechanical design and kinematics of a novel rigid-flexible coupling hybrid robot to develop a promising aeroengine blades in situ repair technology.
Abstract
Purpose
This paper aims to present the mechanical design and kinematics of a novel rigid-flexible coupling hybrid robot to develop a promising aeroengine blades in situ repair technology.
Design/methodology/approach
According to requirements analysis, a novel rigid-flexible coupling hybrid robot is proposed by combining a three degrees of freedom (DOF) parallel mechanism with a flexible continuum section. Then the kinematics models of both parallel mechanism and flexible continuum section are derived respectively. Finally, based on equivalent joint method, a two-step numerical iterative inverse kinematics algorithm is proposed for the whole robot: (1) the flexible continuum section is equivalently transformed to a 2-DOF spherical joint, thus the approximate analytical inverse kinematic solution can be obtained; (2) the accurate solution is derived by an iterative derivation of both parallel mechanism and flexible continuum section.
Findings
To verify structure scheme and the proposed kinematics modeling method, numerical simulations and prototype experiments are implemented. The results show that the proposed kinematics algorithm has sufficient accuracy and computational efficiency in the whole available workspace, that is end-effector position error and orientation error are less than 0.2 mm and 0.01° respectively, and computation time is less than 0.22s.
Originality/value
A novel rigid-flexible coupling hybrid robot for aeroengine blades in situ repair is designed. A two-step numerical iterative inverse kinematics algorithm is proposed for this unique hybrid robots, which has good accuracy and computational efficiency.
Details
Keywords
Smart card-based E-payment systems are receiving increasing attention as the number of implementations is witnessed on the rise globally. Understanding of user adoption behavior…
Abstract
Smart card-based E-payment systems are receiving increasing attention as the number of implementations is witnessed on the rise globally. Understanding of user adoption behavior of E-payment systems that employ smart card technology becomes a research area that is of particular value and interest to both IS researchers and professionals. However, research interest focuses mostly on why a smart card-based E-payment system results in a failure or how the system could have grown into a success. This signals the fact that researchers have not had much opportunity to critically review a smart card-based E-payment system that has gained wide support and overcome the hurdle of critical mass adoption. The Octopus in Hong Kong has provided a rare opportunity for investigating smart card-based E-payment system because of its unprecedented success. This research seeks to thoroughly analyze the Octopus from technology adoption behavior perspectives.
Cultural impacts on adoption behavior are one of the key areas that this research posits to investigate. Since the present research is conducted in Hong Kong where a majority of population is Chinese ethnicity and yet is westernized in a number of aspects, assuming that users in Hong Kong are characterized by eastern or western culture is less useful. Explicit cultural characteristics at individual level are tapped into here instead of applying generalization of cultural beliefs to users to more accurately reflect cultural bias. In this vein, the technology acceptance model (TAM) is adapted, extended, and tested for its applicability cross-culturally in Hong Kong on the Octopus. Four cultural dimensions developed by Hofstede are included in this study, namely uncertainty avoidance, masculinity, individualism, and Confucian Dynamism (long-term orientation), to explore their influence on usage behavior through the mediation of perceived usefulness.
TAM is also integrated with the innovation diffusion theory (IDT) to borrow two constructs in relation to innovative characteristics, namely relative advantage and compatibility, in order to enhance the explanatory power of the proposed research model. Besides, the normative accountability of the research model is strengthened by embracing two social influences, namely subjective norm and image. As the last antecedent to perceived usefulness, prior experience serves to bring in the time variation factor to allow level of prior experience to exert both direct and moderating effects on perceived usefulness.
The resulting research model is analyzed by partial least squares (PLS)-based Structural Equation Modeling (SEM) approach. The research findings reveal that all cultural dimensions demonstrate direct effect on perceived usefulness though the influence of uncertainty avoidance is found marginally significant. Other constructs on innovative characteristics and social influences are validated to be significant as hypothesized. Prior experience does indeed significantly moderate the two influences that perceived usefulness receives from relative advantage and compatibility, respectively. The research model has demonstrated convincing explanatory power and so may be employed for further studies in other contexts. In particular, cultural effects play a key role in contributing to the uniqueness of the model, enabling it to be an effective tool to help critically understand increasingly internationalized IS system development and implementation efforts. This research also suggests several practical implications in view of the findings that could better inform managerial decisions for designing, implementing, or promoting smart card-based E-payment system.
Details
Keywords
Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang
Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost…
Abstract
Purpose
Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.
Design/methodology/approach
In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.
Findings
This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.
Originality/value
The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.
Details
Keywords
Jiehao Li, Junzheng Wang, Shoukun Wang, Hui Peng, Bomeng Wang, Wen Qi, Longbin Zhang and Hang Su
This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory…
Abstract
Purpose
This paper aims on the trajectory tracking of the developed six wheel-legged robot with heavy load conditions under uncertain physical interaction. The accuracy of trajectory tracking and stable operation with heavy load are the main challenges of parallel mechanism for wheel-legged robots, especially in complex road conditions. To guarantee the tracking performance in an uncertain environment, the disturbances, including the internal friction, external environment interaction, should be considered in the practical robot system.
Design/methodology/approach
In this paper, a fuzzy approximation-based model predictive tracking scheme (FMPC) for reliable tracking control is developed to the six wheel-legged robot, in which the fuzzy logic approximation is applied to estimate the uncertain physical interaction and external dynamics of the robot system. Meanwhile, the advanced parallel mechanism of the electric six wheel-legged robot (BIT-NAZA) is presented.
Findings
Co-simulation and comparative experimental results using the BIT-NAZA robot derived from the developed hybrid control scheme indicate that the methodology can achieve satisfactory tracking performance in terms of accuracy and stability.
Originality/value
This research can provide theoretical and engineering guidance for lateral stability of intelligent robots under unknown disturbances and uncertain nonlinearities and facilitate the control performance of the mobile robots in a practical system.