Search results
1 – 10 of over 14000Abhinav Kumar Sharma, Indrajit Mukherjee, Sasadhar Bera and Raghu Nandan Sengupta
The primary objective of this study is to propose a robust multiobjective solution search approach for a mean-variance multiple correlated quality characteristics optimisation…
Abstract
Purpose
The primary objective of this study is to propose a robust multiobjective solution search approach for a mean-variance multiple correlated quality characteristics optimisation problem, so-called “multiple response optimisation (MRO) problem”. The solution approach needs to consider response surface (RS) model parameter uncertainties, response uncertainties, process setting sensitivity and response correlation strength to derive the robust solutions iteratively.
Design/methodology/approach
This study adopts a new multiobjective solution search approach to determine robust solutions for a typical mean-variance MRO formulation. A fine-tuned, non-dominated sorting genetic algorithm-II (NSGA-II) is used to derive efficient multiobjective solutions for varied mean-variance MRO problems. The iterative search considers RS model uncertainties, process setting uncertainties and response correlation structure to derive efficient fronts. The final solutions are ranked based on two different multi-criteria decision-making (MCDM) techniques.
Findings
Five different mean-variance MRO cases are selected from the literature to verify the efficacy of the proposed solution approach. Results derived from the proposed solution approach are compared and contrasted with the best solution(s) derived from other approaches suggested in the literature. Comparative results indicate significant superiorities of the top-ranked predicted robust solutions in nondominated frequency, closeness-to-target and response variabilities.
Research limitations/implications
The solution approach depends on RS modelling and considers continuous search space.
Practical implications
In this study, promising robust solutions are expected to be more suitable for implementation than point estimate-based MOO solutions for a real-life MRO problem.
Originality/value
No evidence of earlier research demonstrates the superiority of a MOO-based iterative solution search approach for mean-variance MRO problems by simultaneously considering model uncertainties, response correlation and process setting sensitivity.
Details
Keywords
Hao Wang, Hamzeh Al Shraida and Yu Jin
Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for…
Abstract
Purpose
Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for online inspection and compensation to prevent error accumulation and improve shape fidelity in AM.
Design/methodology/approach
A sequence-to-sequence model with an attention mechanism (Seq2Seq+Attention) is proposed and implemented to predict subsequent layers or the occluded toolpath deviations after the multiresolution alignment. A shape compensation plan can be performed for the large deviation predicted.
Findings
The proposed Seq2Seq+Attention model is able to provide consistent prediction accuracy. The compensation plan proposed based on the predicted deviation can significantly improve the printing fidelity for those layers detected with large deviations.
Practical implications
Based on the experiments conducted on the knee joint samples, the proposed method outperforms the other three machine learning methods for both subsequent layer and occluded toolpath deviation prediction.
Originality/value
This work fills a research gap for predicting in-plane deviation not only for subsequent layers but also for occluded paths due to the missing scanning measurements. It is also combined with the multiresolution alignment and change point detection to determine the necessity of a compensation plan with updated G-code.
Details
Keywords
A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical…
Abstract
A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.
Details
Keywords
Abhinav Kumar Sharma and Indrajit Mukherjee
The purpose of this paper is to address three key objectives. The first is the proposal of an enhanced multiobjective optimisation (MOO) solution approach for the mean and…
Abstract
Purpose
The purpose of this paper is to address three key objectives. The first is the proposal of an enhanced multiobjective optimisation (MOO) solution approach for the mean and mean-variance optimisation of multiple “quality characteristics” (or “responses”), considering predictive uncertainties. The second objective is comparing the solution qualities of the proposed approach with those of existing approaches. The third objective is the proposal of a modified non-dominated sorting genetic algorithm-II (NSGA-II), which improves the solution quality for multiple response optimisation (MRO) problems.
Design/methodology/approach
The proposed solution approach integrates empirical response surface (RS) models, a simultaneous prediction interval-based MOO iterative search, and the multi-criteria decision-making (MCDM) technique to select the best implementable efficient solutions.
Findings
Implementation of the proposed approach in varied MRO problems demonstrates a significant improvement in the solution quality in worst-case scenarios. Moreover, the results indicate that the solution quality of the modified NSGA-II largely outperforms those of two existing MOO solution strategies.
Research limitations/implications
The enhanced MOO solution approach is limited to parametric RS prediction models and continuous search spaces.
Practical implications
The best-ranked solutions according to the proposed approach are derived considering the model predictive uncertainties and MCDM technique. These solutions (or process setting conditions) are expected to be more reliable for satisfying customer specification compared to point estimate-based MOO solutions in real-life implementation.
Originality/value
No evidence exists of earlier research that has demonstrated the suitability and superiority of an MOO solution approach for both mean and mean-variance MRO problems, considering RS uncertainties. Furthermore, this work illustrates the step-by-step implementation results of the proposed approach for the six selected MRO problems.
Details
Keywords
Royal Madan, Kashinath Saha and Shubhankar Bhowmick
The limit elastic speed of rotating disk is an important design criterion, as it defines the limit before onset of yielding initiates. The purpose of this paper is to establish…
Abstract
Purpose
The limit elastic speed of rotating disk is an important design criterion, as it defines the limit before onset of yielding initiates. The purpose of this paper is to establish the limit elastic speeds for S-FG disks and report the stresses induced at such speeds.
Design/methodology/approach
For S-FGM disk, effective Young’s modulus is calculated using modified rule of mixture and subsequently effective yield stress is also calculated by taking into consideration of stress-strain transfer ratio. The S-FGM disk is subject to centrifugal loading and the stress and deformation characteristics are investigated using variational principle wherein the solution is obtained by Galerkin’s error minimization principle. Based on von-Mises yield criteria, equivalent stress is calculated at different angular speeds till the equivalent stress at any given location in the disk attains the value of effective yield stress at the given location (location of yield initiation). This defines the limit elastic speed for the S-FGM disk (for given n).
Findings
The limit elastic speed of S-FGM disks for a range of grading index (n) and corresponding stresses within the disk are reported. Results are reported for uniform disks of different aspect ratio and the results reported could be used as practical design data.
Practical implications
Functional grading of material in structures opens a new horizon to explore the possibility of manufacturing high strength component at low weight. Material grading plays a significant role in achieving desired material properties, and literature review reveals reporting of numerous grading functions to approximate material distribution in structure.
Originality/value
The work has not been addressed earlier and findings provide a pioneering insight into the performance of S-FG disks.
Details
Keywords
Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…
Abstract
Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.
Details
Keywords
Jiju Antony, Vijaya Sunder M., Chad Laux and Elizabeth Cudney
Beatriz Pontes, Federico Divina, Raúl Giráldez and Jesús S. Aguilar‐Ruiz
The purpose of this paper is to present a novel control mechanism for avoiding overlapping among biclusters in expression data.
Abstract
Purpose
The purpose of this paper is to present a novel control mechanism for avoiding overlapping among biclusters in expression data.
Design/methodology/approach
Biclustering is a technique used in analysis of microarray data. One of the most popular biclustering algorithms is introduced by Cheng and Church (2000) (Ch&Ch). Even if this heuristic is successful at finding interesting biclusters, it presents several drawbacks. The main shortcoming is that it introduces random values in the expression matrix to control the overlapping. The overlapping control method presented in this paper is based on a matrix of weights, that is used to estimate the overlapping of a bicluster with already found ones. In this way, the algorithm is always working on real data and so the biclusters it discovers contain only original data.
Findings
The paper shows that the original algorithm wrongly estimates the quality of the biclusters after some iterations, due to random values that it introduces. The empirical results show that the proposed approach is effective in order to improve the heuristic. It is also important to highlight that many interesting biclusters found by using our approach would have not been obtained using the original algorithm.
Originality/value
The original algorithm proposed by Ch&Ch is one of the most successful algorithms for discovering biclusters in microarray data. However, it presents some limitations, the most relevant being the substitution phase adopted in order to avoid overlapping among biclusters. The modified version of the algorithm proposed in this paper improves the original one, as proven in the experimentation.
Details
Keywords
Uroš Bohinc, Adnan Ibrahimbegovic and Boštjan Brank
The purpose of this paper is to address error‐controlled adaptive finite element (FE) method for thin and thick plates. A procedure is presented for determining the most suitable…
Abstract
Purpose
The purpose of this paper is to address error‐controlled adaptive finite element (FE) method for thin and thick plates. A procedure is presented for determining the most suitable plate model (among available hierarchical plate models) for each particular FE of the selected mesh, that is provided as the final output of the mesh adaptivity procedure.
Design/methodology/approach
The model adaptivity procedure can be seen as an appropriate extension to model adaptivity for linear elastic plates of so‐called equilibrated boundary traction approach error estimates, previously proposed for 2D/3D linear elasticity. Model error indicator is based on a posteriori element‐wise computation of improved (continuous) equilibrated boundary stress resultants, and on a set of hierarchical plate models. The paper illustrates the details of proposed model adaptivity procedure for choosing between two most frequently used plate models: the one of Kirchhoff and the other of Reissner‐Mindlin. The implementation details are provided for a particular case of the discrete Kirchhoff quadrilateral four‐node plate FE and the corresponding Reissner‐Mindlin quadrilateral with the same number of nodes. The key feature for those elements that they both provide the same quality of the discretization space (and thus the same discretization error) is the one which justifies uncoupling of the proposed model adaptivity from the mesh adaptivity.
Findings
Several numerical examples are presented in order to illustrate a very satisfying performance of the proposed methodology in guiding the final choice of the optimal model and mesh in analysis of complex plate structures.
Originality/value
The paper confirms that one can make an automatic selection of the most appropriate plate model for thin and thick plates on the basis of proposed model adaptivity procedure.
Details