Tian Sang, Mohammad A. Gharaibeh, Luke Wentlent, James R. Wilcox and James M. Pitarresi
Because of growing demand for slim, thin and cheap handheld devices, reduced-volume solder interconnects like land grid array (LGA) are becoming attractive and popular choices…
Abstract
Purpose
Because of growing demand for slim, thin and cheap handheld devices, reduced-volume solder interconnects like land grid array (LGA) are becoming attractive and popular choices over the traditional ball grid array (BGA) packages. This study aims to investigate the mechanical shock and impact reliability of various solder alloys and BGA/LGA interconnect configurations.
Design/methodology/approach
Therefore, this paper uses drop testing experiments and numerical finite element simulations to evaluate and compare the reliability performance of both LGA and BGA components when exposed to drop and impact loadings. Additionally, three common solder alloys, including 63Sn37Pb, SAC305 and Innolot, are discussed.
Findings
The results of this study showed that electronic packages’ drop and impact reliability is strongly driven by the solder configuration and the alloy type. Particularly, the combination of stiff solder alloy and shorter joint, LGA’s assembled with SAC305, results in highly improved drop reliability. Moreover, the BGA packages’ performance can be considerably enhanced by using ductile and compliant solder alloys, that is, 63Sn37Pb. Finally, this paper discussed the failure mode of the various solder configurations and used simulation results to explain the crack and failure situations.
Originality/value
In literature, there is a lack of published work on the drop and impact reliability evaluation and comparison of LGA and BGA solders. This paper provides quantitative analysis on the reliability of lead-based and lead-free solders when assembled with LGA and BGA interconnects.
Details
Keywords
This paper aims to present a reliability performance assessment of electronic packages subjected to harmonic vibration loadings by using a statistical factorial analysis…
Abstract
Purpose
This paper aims to present a reliability performance assessment of electronic packages subjected to harmonic vibration loadings by using a statistical factorial analysis technique. The effects of various geometric parameters, the size and thickness of the printed circuit board and component and solder interconnect dimensions on the fundamental resonant frequency of the assembly and the axial strain of the most critical solder joint were thoroughly investigated.
Design/methodology/approach
A previously published analytical solution for the problem of electronic assembly vibration was adopted. This solution was modified and used to generate the natural frequency and solder axial strains data for various package geometries. Statistical factorial analysis was used to analyze these data.
Findings
The results of the present study showed that the reliability of electronic packages under vibration could be significantly enhanced by selecting larger and thicker printed circuit boards and thinner and smaller electrical components. Additionally, taller and thinner solders might also produce better reliability behavior.
Originality/value
The results of this investigation can be very useful in the design process of electronic products in mechanical vibration environments.
Details
Keywords
One difficultly in building an effective finite element (FE) model of a board-level package is because of complex structure of the printed circuit board (PCB), as it contains…
Abstract
Purpose
One difficultly in building an effective finite element (FE) model of a board-level package is because of complex structure of the printed circuit board (PCB), as it contains copper layers, woven fabrics, plated-through holes and so forth. Therefore, it is often acceptable to obtain equivalent orthotropic material properties and use them in the simulation. This paper aims to provide a research methodology to produce equivalent FE models for board-level electronic packages.
Design/methodology/approach
In this methodology, the FE models’ data were correlated with experimental modal analysis results in terms of natural frequencies and mode shapes. Statistical factorial analysis was used to examine the electronic assembly material properties effect on the structure’s resonant frequencies. The equivalent material properties of the PCB were adjusted using the optimization tool available in ANSYS software for free boundary conditions. The equivalent FE model was then validated for the fixed boundary conditions.
Findings
The resultant FE models were in great match with the measured data in terms of resonant frequencies and mode shapes. The so-developed models can be further used in the analysis of the dynamic response of the electronic packages and solder interconnects.
Originality/value
The current approach provides a sophisticated research methodology to provide high-accuracy FE models of electronic assemblies subjected to vibration. The main value of this approach is to first test the effect of each material property on the package dynamic characteristics before starting the correlation process, then to automate the correlation algorithm using the built-in FE model updating feature available in ANSYS software.
Details
Keywords
Mohammad Gharaibeh, Aaron J. Stewart, Quang T. Su and James M. Pitarresi
This paper aims to investigate and compare the reliability performance of land grid array (LGA) and ball grid array (BGA) solders, as well as the SAC105 and 63Sn37Pb solder…
Abstract
Purpose
This paper aims to investigate and compare the reliability performance of land grid array (LGA) and ball grid array (BGA) solders, as well as the SAC105 and 63Sn37Pb solder alloys, in vibration loading conditions.
Design/methodology/approach
Reliability tests were conducted using a sine dwell with resonance tracking vibration experiment. Finite element simulations were performed to help in understanding the observed failure trends.
Findings
Reliability results showed that the tin-lead solders out-perform lead-free solders in vibrations loading. Additionally, the LGA solder type could provide a better vibration reliability performance than BGA solders. Failure analysis results showed that in LGAs, the crack is initiated at the printed circuit board side and at the component side in BGAs. In both types, the crack is propagated throughout in the intermetallic compound layer.
Originality/value
In literature, there is a lack of published data in the comparison between LGA and BGA reliability performance in vibration loadings. This paper provides useful insights in the vibration reliability behavior of the two common solder joint types.
Details
Keywords
This study aims to discuss the determination of the unknown in-plane mechanical material properties of printed circuit boards (PCBs) by correlating the results from dynamic…
Abstract
Purpose
This study aims to discuss the determination of the unknown in-plane mechanical material properties of printed circuit boards (PCBs) by correlating the results from dynamic testing and finite element (FE) models using the response surface method (RSM).
Design/methodology/approach
The first 10 resonant frequencies and vibratory mode shapes are measured using modal analysis with hammer testing experiment, and hence, systematically compared with finite element analysis (FEA) results. The RSM is consequently used to minimize the cumulative error between dynamic testing and FEA results by continuously modifying the FE model, to acquire material properties of PCBs.
Findings
Great agreement is shown when comparing FEA to measurements, the optimum in-plane material properties were identified, and hence, verified.
Originality/value
This paper used FEA and RSMs along with modal measurements to obtain in-plane material properties of PCBs. The methodology presented here can be easily generalized and repeated for different board designs and configurations.
Details
Keywords
V. Prakash, P.A. Engel, J.M. Pitarresi, T. Albert and G. Westby
During the insertion of pin‐in‐hole (PIH) components in a printed circuit board (PCB), adhesively bonded and/or soldered surface mount components (SMCs) already on the board…
Abstract
During the insertion of pin‐in‐hole (PIH) components in a printed circuit board (PCB), adhesively bonded and/or soldered surface mount components (SMCs) already on the board experience mechanical stress. This paper describes the results of a study investigating the forces induced in the adhesive bond and the surface mounts during the insertion of dual inline package (DIP) components. The failure criteria for the glue bonds as well as the gullwing leads were determined from experimental strength tests. The forces in the glue and in the leads were calculated by a combination of analytical and finite element methods. It was found that the adhesive bond as well as the soldered gullwing lead would not fail under the forces induced in the insertion operation.
Mohammad A. Gharaibeh and Faris M. Al-Oqla
There are several lead-free solder alloys available in the industry. Over the years, the most favorable solder composition of tin-silver-copper (Sn-Ag-Cu [SAC]) has been vastly…
Abstract
Purpose
There are several lead-free solder alloys available in the industry. Over the years, the most favorable solder composition of tin-silver-copper (Sn-Ag-Cu [SAC]) has been vastly used and accepted for joining the electronic components. It is strongly believed that the silver (Ag) content has a significant impact on the solder mechanical behavior and thus solder thermal reliability performance. This paper aims to assess the mechanical response, i.e. creep response, of the SAC solder alloys with various Ag contents.
Design/methodology/approach
A three-dimensional nonlinear finite element simulation is used to investigate the thermal cyclic behavior of several SAC solder alloys with various silver percentages, including 1%, 2%, 3% and 4%. The mechanical properties of the unleaded interconnects with various Ag amounts are collected from reliable literature resources and used in the analysis accordingly. Furthermore, the solder creep behavior is examined using the two famous creep laws, namely, Garofalo’s and Anand’s models.
Findings
The nonlinear computational analysis results showed that the silver content has a great influence on the solder behavior as well as on thermal fatigue life expectancy. Specifically, solders with relatively high Ag content are expected to have lower plastic deformations and strains and thus better fatigue performance due to their higher strengths and failure resistance characteristics. However, such solders would have contrary fatigue performance in drop and shock environments and the low-Ag content solders are presumed to perform significantly better because of their higher ductility.
Originality/value
Generally, this research recommends the use of SAC solder interconnects of high silver contents, e.g. 3% and 4%, for designing electronic assemblies continuously exposed to thermal loadings and solders with relatively low Ag-content, i.e. 1% and 2%, for electronic packages under impact and shock loadings.
Details
Keywords
Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…
Abstract
Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.
Details
Keywords
This paper aims to compare and evaluate the influence of package designs and characteristics on the mechanical reliability of electronic assemblies when subjected to harmonic…
Abstract
Purpose
This paper aims to compare and evaluate the influence of package designs and characteristics on the mechanical reliability of electronic assemblies when subjected to harmonic vibrations.
Design/methodology/approach
Using finite element analysis (FEA), the effect of package design-related parameters, including the interconnect array configuration, i.e. full vs perimeter, and package size, on solder mechanical stresses are fully addressed.
Findings
The results of FEA simulations revealed that the number of solder rows or columns available in the array, could significantly affect solder stresses. In addition, smaller packages result in lower solder stresses and differing distributions.
Originality/value
In literature, there are no papers that discuss the effect of solder array layout on electronic packages vibration reliability. In addition, general rules for designing electronic assemblies subjected to harmonic vibration loadings are proposed in this paper.
Details
Keywords
The purpose of this paper is to identify the critical parameters that influence ball grid array and chip size package fatigue life in a random vibration environment by using a…
Abstract
Purpose
The purpose of this paper is to identify the critical parameters that influence ball grid array and chip size package fatigue life in a random vibration environment by using a design of experimental (DOE) approach using simulation results.
Design/methodology/approach
The use of DOE and analysis of variation to identify the critical parameters and a response surface to generate a functional form for global modeling would be determined. Once the global modeling’s functional form was known, it can be used as boundary condition, which would be input to a local model. Knowing the critical stress, one would estimate the fatigue life from a damage model. It is the curvature of the printed wiring board in the region of the component of interest that is driving the component’s solder joint damage. The approach in this present work involves global-local modeling approaches. In the global model approach, the vibration response of the printed circuit board (PCB) will be determined.
Findings
This global model will give the response of the PCB at specific component locations of interest. This response is then fed into a local stress analysis for accurate assessment of the critical stresses in the solder joints of interest. The stresses are then fed into a fatigue damage model to predict the life.
Originality/value
The analysis proposed in this paper uses a failure type approach to damage analysis and involves global and local model approaches.