A methodology was developed to establish baseline metrics for assessing the isothermal aging of 63Sn‐37Pb (or 60Sn‐40Pb) solder joints in circuit board assemblies. Those metrics…
Abstract
A methodology was developed to establish baseline metrics for assessing the isothermal aging of 63Sn‐37Pb (or 60Sn‐40Pb) solder joints in circuit board assemblies. Those metrics were the intermetallic compound layer thickness at the Sn‐Pb solder/Cu interface and the Pb‐rich phase particle size distribution in the solder. The baseline, or as‐fabricated, values for these metrics were 0.71±0.27 μm and 3.2±6.5×10−6 mm2, respectively. The rate kinetics were determined for growth of the intermetallic compound layer and coarsening of the Pb‐rich phase particles by isothermal aging experiments. The/were: (1) intermetallic compound layer thickness (μm)=0.714+ 3.265×103 t0.58 exp(−52200/RT); and (2) Pb‐rich phase particle size (mm2)=3.2×10−6+1.47× 10−3 t0.32 exp(−31000/RT).
Details
Keywords
M. He, N. De Leon and V.L. Acoff
The purpose of this paper is to investigate a Pb‐free solder alternative, specifically the effect of Bi on the microstructure and tensile strength of Sn‐3.7Ag solders casted under…
Abstract
Purpose
The purpose of this paper is to investigate a Pb‐free solder alternative, specifically the effect of Bi on the microstructure and tensile strength of Sn‐3.7Ag solders casted under different cooling rates.
Design/methodology/approach
Sn‐3.7Ag solder paste was mechanically blended with different percentages of Bi particles (99.999 percent) to form composite solder pastes. The solder paste was cast under different cooling rates to form dog‐bone shape samples for tensile testing. The solder samples were subjected to tensile testing on an INSTRON 5543 tester with loading rate 10−3 s−1. Both the as‐cast and tensile‐tested samples were mounted, ground and polished for microstructure and fracture surface analysis. Scanning electron microscopy/Energy dispersive X‐ray spectroscopy was used to characterize the microstructure, morphology, and composition.
Findings
The tensile strength of Sn‐3.7Ag solder increased with increased Bi addition. However, elongation decreased with increased Bi addition. The tensile strength of Sn‐3.7Ag‐xBi (x=0, 1, 2, 3, 4 wt%) solders increased with increased cooling rates when Bi is lower than 3 wt%. The reason for improved strength of Sn‐3.7Ag‐xBi solders is the result of the combination of the solid solution strengthening and precipitation strengthening effects of Bi.
Originality/value
Tensile testing Bi reinforced Sn‐3.7Ag solder formed under different cooling rates is new in the paper. With the additions of Bi to Sn‐3.7Ag, the solder strength has been increased, which may be beneficial to the electronics industry and other researchers seeking a better replacement for Sn−Pb solder.
Details
Keywords
A test procedure was developed to assess the capillary flow wettability of soldersinside a confined geometry. The test geometry comprised two parallel plates with a controlledgap…
Abstract
A test procedure was developed to assess the capillary flow wettability of solders inside a confined geometry. The test geometry comprised two parallel plates with a controlled gap of constant thickness (0.008 cm, 0.018 cm, 0.025 cm and 0.038 cm). Capillary flow was assessed by: (1) the meniscus or capillary rise of the solder within the gap; (2) the extent of void formation in the gap; and (3) the time dependence of the risen solder film. Tests were performed with the lead‐free solders 95Sn‐5Sb, 96.5Sn‐3.5Ag, and 91.84Sn‐3.33Ag‐4.83Bi. The capillary rise of the lead‐free solders was less than that observed with the 63Sn‐37Pb control. Reducing the solder surface tension and contact angle improved capillary flow. Void formation by the non lead solders increased as the gap became smaller. The extent of voiding was determined primarily by the gap size rather than the wettability parameters (contact angle or surface tension) of the individual alloys.
Details
Keywords
Aemi Nadia and A.S.M.A. Haseeb
The purpose of this paper is to focus on the fabrication of SAC nanocomposites solder and discuss the effects of nanoCu addition on the structure and properties of resulted…
Abstract
Purpose
The purpose of this paper is to focus on the fabrication of SAC nanocomposites solder and discuss the effects of nanoCu addition on the structure and properties of resulted nanocomposite solder.
Design/methodology/approach
Ball milling is a nonequilibrium processing technique for producing composite metal particles with submicron homogeneity by the repeated cold welding and fracture of powder particles. This method is believed to offer good processablity, precise control over the solder composition, and produce more homogeneous mixture.
Findings
It is found that the melting temperature, the wetting behaviour, and hardness are improved when the Cu nanoparticles are added.
Originality/value
So far, no work has been done on the preparation of Cu nanoparticle added composite by ball milling. This paper presents the fabrication of Sn‐Ag‐Cu nanocomposite solders in a planetary ball mill process, and the data are compared with related researches done.
Details
Keywords
Xun Wang, Yongchang Liu, Liming Yu, Zhizhong Dong and Zhiming Gao
The purpose of this paper is to study the relationship between microstructure and mechanical properties of Sn‐4.0Bi‐3.7Ag‐0.9Zn (in wt%) solder, and the structural evolution of…
Abstract
Purpose
The purpose of this paper is to study the relationship between microstructure and mechanical properties of Sn‐4.0Bi‐3.7Ag‐0.9Zn (in wt%) solder, and the structural evolution of the soldered interfaces.
Design/methodology/approach
The solder was prepared by a vacuum arc furnace. Scanning electron microscopy (SEM) and X‐ray diffraction were used to identify the microstructure and composition. The melting temperature, microhardness and tensile strength were measured. Solder joints were prepared by reflowing at 250°C for 1 min in a vacuum oven and the soldered interfaces were observed by using SEM.
Findings
The microstructure of the slowly cooled Sn‐4.0Bi‐3.7Ag‐0.9Zn specimen is composed of bulk Ag3Sn, AgZn intermetallic compounds (IMCs), Bi precipitates and a β‐Sn phase. The developed solder exhibits good comprehensive properties, such as low‐melting temperature, high microhardness and ultimate tensile strength. A complicated IMC layer forms at the interface with Cu pads and it turns into a thinner Ni3Sn4 layer with Ni/Cu substrates.
Originality/value
The paper shows how a high performance, lead‐free solder was developed.
Details
Keywords
Abstract
Purpose
This paper aims to present a viscoplastic constitutive model of Sn‐Pb solder taking into account the evolution of microstructure and damage growth in the material.
Design/methodology/approach
The microstructure evolution is represented by a parameter describing the coarsening of the phase size, and its resulting evolution equation is established from previous experimental data. The damage evolution is derived from the theory of damage mechanics within the framework of irreversible thermodynamics. Both a phase‐size parameter and a damage variable are included in the constitutive model.
Findings
The model is capable of simulating the effects of Sn‐Pb solder microstructure on mechanical behaviour for both bulk material and miniature specimens under monotonic tensile loading. It was found that the expected failure location determined using the phase‐size criterion is identical to that using the damage criterion, but differs from that determined using the von Mises stress criterion.
Originality/value
Microstructure and damage evolution are modelled for Sn‐Pb solder. Some simulation results are compared with the experimental data to provide the necessary validation of the damage/microstructure‐coupled constitutive model.
Details
Keywords
Z. Moser, P. Fima, K. Bukat, J. Sitek, J. Pstruś, W. Gąsior, M. Kościelski and T. Gancarz
The purpose of this paper is to investigate the influence of In additions on the wetting properties of the Sn2.86Ag0.40Cu (in wt%) eutectic‐based alloys, on a copper substrate, in…
Abstract
Purpose
The purpose of this paper is to investigate the influence of In additions on the wetting properties of the Sn2.86Ag0.40Cu (in wt%) eutectic‐based alloys, on a copper substrate, in the presence of a flux. The main goal was to find correlations between the results of the wetting balance (WB) and the sessile drop (SD) method, in relation to the contact angles.
Design/methodology/approach
The WB method was applied for the wetting measurements, at 250°C, in an air atmosphere and in the presence of a flux. The SD measurements were conducted at the same temperature, in the presence of the same flux, but in an Ar atmosphere, while the maximum bubble pressure (MBP) and dilatometric measurements were conducted in an Ar+H2 atmosphere. The density data from the dilatometric method were used for the determination of the surface tension by means of MBP, and the WB method was used to determine the surface and interfacial tension. Next, the surface tension data from these two methods were compared. The WB data were used to calculate the contact angles and the obtained indirect data were compared with the results of the direct SD measurements of the contact angle.
Findings
A higher In content in the alloy resulted in a lower contact angle on the copper, and the WB results agreed well with the results of the SD experiments. It was confirmed that, in liquid In‐Sn and the alloys containing In and Sn (Ag‐In‐Sn, Sn‐Ag‐Cu‐In, Sn‐Zn‐In), the improvement of the wettability was indicated only by the increase of the contact angle with the increasing In content.
Research limitations/implications
Further studies are necessary for the confirmation of practical application, but they should be directed to the soldering of high indium alloys on printed circuit boards, with different finishes and qualities of the solder joint performance.
Practical implications
Taking into account the contact angle data from the WB and SD methods, the best results of the SAC‐In alloy on copper were obtained for the alloy of the highest In content. It was found that the contact angles from SD after 4 s were higher (non‐equilibrium conditions) than the values calculated from WB after 3 s. In contrast, the contact angles from SD after 10 min (equilibrium conditions) were lower than those from WB after 3 s. The comparison suggests that the contact angles from WB are situated within the data from SD, showing the same lowering tendency with the increasing content of In, and they may be well accepted for practical purposes. On the other hand, the sample of the solder in the SD method, after a prolonged time – in order to get the equilibrium contact angle – may be used to study the interfacial phenomena with the Cu substrate. The differential thermal analysis results indicate that the melting temperature decreases with increasing tin concentration. Taking into account the results of this study and the available literature data, alloys containing 8‐10 wt% of In can be recommended for practical application.
Originality/value
The WB and SD methods were used for the contact angle determination of a wide range of solder compositions, in the same temperature and flux conditions. Also, the surface tensions for these alloys were determined with the use of two independent methods: the MBP and the WB methods. The results obtained made it possible to draw conclusions regarding the correlation between the output of different methods and the conditions in which a comparison of the results can be made. It is supposed that these observations apply to many other alloy systems.
Details
Keywords
K. Bukat, J. Sitek, R. Kisiel, Z. Moser, W. Gasior, M. Kościelski and J. Pstruś
The purpose of this paper is a comparable evaluation of the influence of a particular element (Bi and Sb) added to Sn‐Ag‐Cu and Sn‐Zn alloys on their surface and interfacial…
Abstract
Purpose
The purpose of this paper is a comparable evaluation of the influence of a particular element (Bi and Sb) added to Sn‐Ag‐Cu and Sn‐Zn alloys on their surface and interfacial tensions, as well as the wetting properties on the Cu substrate expressed by the wetting angle.
Design/methodology/approach
The authors applied the L8 orthogonal Taguchi array to carry out the experiments and discussed the results using analysis of variance (ANOVA).
Findings
It was expected, on the base of previous studies, the decrease of the surface and interfacial tensions and thus improving wettability after the Bi and Sb addition to Sn‐Ag‐Cu and Sn‐Zn alloys. Unfortunately, the obtained results on the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys and the quaternary Sn‐Zn‐Bi‐Sb alloys do not confirm these trends. The performed analyses suggest that the compositions of the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys, as well as the quaternary Sn‐Zn‐Bi‐Sb alloys, do not have optimal compositions for practical application. The Cu, Bi and Sb elements in the case of the Sn‐Ag‐Cu‐Bi‐Sb alloys and the Zn, Bi and Sb elements in the case of the Sn‐Zn‐Bi‐Sb alloys show mutual interaction and, in consequence, there is no correlation between the tendency of the surface and interfacial tensions changes and the wettings of the Cu substrate.
Research limitations/implications
It is suggested that further studies are necessary for the purpose of the practical application, but they should be limited mainly to the Sn‐Ag‐Cu‐Bi and the Sn‐Zn‐Bi alloys with the optimal compositions.
Practical implications
The performed analysis suggests that none of the investigated compositions of the quinary Sn‐Ag‐Cu‐Bi‐Sb alloys, as well as the quaternary Sn‐Zn‐Bi‐Sb alloys, have the optimal compositions for practical application.
Originality/value
The quickest way to determine which element of the alloy composition influences the surface tension and the wetting properties, and how, is to apply orthogonal analysis. After choosing the orthogonal array, the experiments were performed and analysis of variance (ANOVA) was used to perform the quantifiable analysis of the measured and calculated results of surface and interfacial tensions, as well as the wetting properties on the Cu substrate.
Details
Keywords
O. Nousiainen, T. Kangasvieri, R. Rautioaho and J. Vähäkangas
The purpose of this paper is to investigate the thermal fatigue endurance of two lead‐free solders used in composite solder joints consisting of plastic core solder balls (PCSB…
Abstract
Purpose
The purpose of this paper is to investigate the thermal fatigue endurance of two lead‐free solders used in composite solder joints consisting of plastic core solder balls (PCSB) and different solder materials, in order to assess their feasibility in low‐temperature cofired ceramic (LTCC)/printed wiring board (PWB) assemblies.
Design/methodology/approach
The characteristic lifetime of these joints was determined in a thermal cycling test (TCT) over a temperature range of −40‐125°C. Their failure mechanisms were analyzed after the TCT using scanning acoustic and optical microscopy, scanning electronic microscope, and field emission scanning electronic microscope investigation.
Findings
The results showed that four different failure mechanisms existed in the test assemblies cracking in the mixed ceramic/metallization zone; or a mixed transgranular/intergranular failure occurred at the low temperature extreme; whereas an intergranular failure within the solder matrix; or separation of the intermetallic layer and the solder matrix occurred at the high temperature extreme. Sn3Ag0.5Cu0.5In0.05Ni was more resistant to mixed transgranular/intergranular failure, but had poor adhesion with the Ag3Sn layer. On the other hand, cracking in the mixed ceramic/metallization zone typically existed in the joints with Sn2.5Ag0.8Cu0.5Sb solder, whereas the joints with Sn3Ag0.5Cu0.5In0.05Ni were practically free of these cracks. The characteristic lifetimes of both test joint configurations were at the same level (800‐1,000) compared with joints consisted of Sn4Ag0.5Cu solder and PCSB studied earlier.
Originality/value
The study investigated in detail the failure mechanisms of the Sn3Ag0.5Cu0.5In0.05Ni and Sn2.5Ag0.8Cu0.5Sb solders under harsh accelerated test conditions. It was proved that these solders behaved similarly to the ternary SnAgCu solders in these conditions and no improvement can be achieved by utilizing these solders in the non‐collpasible solder joints of LTCC/PWB assemblies.
Details
Keywords
Przemyslaw Fima, Tomasz Gancarz, Janusz Pstrus, Krystyna Bukat and Janusz Sitek
The purpose of this paper is to study the effect of copper concentration in near‐eutectic liquid SAC solders on their thermophysical properties: viscosity, surface tension…
Abstract
Purpose
The purpose of this paper is to study the effect of copper concentration in near‐eutectic liquid SAC solders on their thermophysical properties: viscosity, surface tension, density; as well as wetting behavior on copper substrates at 523 K.
Design/methodology/approach
Viscosity, surface tension, and density were studied over a broad range of temperatures with the recently developed Roach‐Henein method. The obtained results were compared with the data from modified capillary, maximum bubble pressure, wetting balance and dilatometric measurements. Wetting angles measured with wetting balance method were compared with the results of sessile drop measurements.
Findings
The results obtained indicate that increasing concentration of copper in the alloy results in higher density, surface tension and viscosity, but differences resulting from copper concentration on wettability are relatively small. At 523 K, the density is: 7.097, 7.186, 7.232 g cm−3, the surface tension is: 538.1, 553.5, 556.7 m Nm−1, the viscosity is: 2.173, 2.227, 2.467 mPas, respectively, for alloys containing 0.41, 1.01 and 1.61 wt% of Cu. Wetting angles on copper substrates are similar within a margin of error for all compositions. The results of present study are compared with the available literature data and a relatively good agreement is observed.
Originality/value
This paper provides the data of thermophysical properties of widely‐used SAC solders including viscosity, of which there is little data in the literature. It is confirmed that the increased copper concentration increases viscosity, yet this effect is small and does not correlate with the wetting behavior.