Zhengbing Hu, Yevgeniy V. Bodyanskiy and Oleksii K. Tyshchenko
Tarik Kucukdeniz and Sakir Esnaf
The purpose of this paper is to propose hybrid revised weighted fuzzy c-means (RWFCM) clustering and Nelder–Mead (NM) simplex algorithm, called as RWFCM-NM, for generalized…
Abstract
Purpose
The purpose of this paper is to propose hybrid revised weighted fuzzy c-means (RWFCM) clustering and Nelder–Mead (NM) simplex algorithm, called as RWFCM-NM, for generalized multisource Weber problem (MWP).
Design/methodology/approach
Although the RWFCM claims that there is no obligation to sequentially use different methods together, NM’s local search advantage is investigated and performance of the proposed hybrid algorithm for generalized MWP is tested on well-known research data sets.
Findings
Test results state the outstanding performance of new hybrid RWFCM and NM simplex algorithm in terms of cost minimization and CPU times.
Originality/value
Proposed approach achieves better results in continuous facility location problems.
Details
Keywords
Seyed Hossein Razavi Hajiagha, Shide Sadat Hashemi and Hannan Amoozad Mahdiraji
Data envelopment analysis (DEA) is a non-parametric model that is developed for evaluating the relative efficiency of a set of homogeneous decision-making units that each unit…
Abstract
Purpose
Data envelopment analysis (DEA) is a non-parametric model that is developed for evaluating the relative efficiency of a set of homogeneous decision-making units that each unit transforms multiple inputs into multiple outputs. However, usually the decision-making units are not completely similar. The purpose of this paper is to propose an algorithm for DEA applications when considered DMUs are non-homogeneous.
Design/methodology/approach
To reach this aim, an algorithm is designed to mitigate the impact of heterogeneity on efficiency evaluation. Using fuzzy C-means algorithm, a fuzzy clustering is obtained for DMUs based on their inputs and outputs. Then, the fuzzy C-means based DEA approach is used for finding the efficiency of DMUs in different clusters. Finally, the different efficiencies of each DMU are aggregated based on the membership values of DMUs in clusters.
Findings
Heterogeneity causes some positive impact on some DMUs while it has negative impact on other ones. The proposed method mitigates this undesirable impact and a different distribution of efficiency score is obtained that neglects this unintended impacts.
Research limitations/implications
The proposed method can be applied in DEA applications with a large number of DMUs in different situations, where some of them enjoyed the good environmental conditions, while others suffered from bad conditions. Therefore, a better assessment of real performance can be obtained.
Originality/value
The paper proposed a hybrid algorithm combination of fuzzy C-means clustering method with classic DEA models for the first time.
Details
Keywords
Among the many accepted clustering techniques, the fuzzy clustering approaches have been developed over the last decades. These approaches have been applied to many areas in…
Abstract
Among the many accepted clustering techniques, the fuzzy clustering approaches have been developed over the last decades. These approaches have been applied to many areas in manufacturing systems. In this paper, a fuzzy clustering approach is proposed for selecting machine cells and part families in cellular manufacturing systems. This fuzzy approach offers a special advantage over existing clustering approaches as it presents the degree of membership of the machine or part associated with each machine cell or part family allowing users flexibility in formulating machine cells and part families. The proposed algorithm is extended and validated using numerical examples to demonstrate its application in cellular manufacturing.
Details
Keywords
Reports on a new methodology for formation of virtual (“extended”) machining cells using generic capability patterns termed “resource elements”. Resource elements are used to…
Abstract
Reports on a new methodology for formation of virtual (“extended”) machining cells using generic capability patterns termed “resource elements”. Resource elements are used to uniquely describe the processing requirements of the component mix and dynamically match them to the processing capabilities of the machining shop. The virtual cell formation methodology is based on four steps: component requirement analysis and generation of processing alternatives; definition of virtual cell capability boundaries; machine tool selection; and system evaluation. The proposed methodology facilitates the dynamic formation of virtual manufacturing structures by providing accurate assessment of the component processing requirements and their matching with the available capabilities of the existing manufacturing facilities.
Details
Keywords
Sanjay Jharkharia and Chiranjit Das
The purpose of this paper is to provide an analytical model for low carbon supplier development. This study is focused on the level of investment and collaboration decisions…
Abstract
Purpose
The purpose of this paper is to provide an analytical model for low carbon supplier development. This study is focused on the level of investment and collaboration decisions pertaining to emission reduction.
Design/methodology/approach
The authors’ model includes a fuzzy c-means (FCM) clustering algorithm and a fuzzy formal concept analysis. First, a set of suppliers were classified according to their carbon performances through the FCM clustering algorithm. Then, the fuzzy formal concepts were derived from a set of fuzzy formal contexts through an intersection-based method. These fuzzy formal concepts provide the relative level of investments and collaboration decisions for each identified supplier cluster. A case from the Indian renewable energy sector was used for illustration of the proposed analytical model.
Findings
The proposed model and case illustration may help manufacturing firms to collaborate with their suppliers for improving their carbon performances.
Research limitations/implications
The study contributes to the low carbon supply chain management literature by identifying the decision criteria of investments toward low carbon supplier development. It also provides an analytical model of collaboration for low carbon supplier development. Though the purpose of the study is to illustrate the proposed analytical model, it would have been better if the model was empirically validated.
Originality/value
Though the earlier studies on green supplier development program evaluation have considered a set of criteria to decide whether or not to invest on suppliers, these are silent on the relative level of investment required for a given set of suppliers. This study aims to fulfill this gap by providing an analytical model that will help a manufacturing firm to invest and collaborate with its suppliers for improving their carbon performance.
Details
Keywords
In real-world decision-making, high accuracy data analysis is essential in a ubiquitous environment. However, we encounter missing data while collecting user-related data…
Abstract
Purpose
In real-world decision-making, high accuracy data analysis is essential in a ubiquitous environment. However, we encounter missing data while collecting user-related data information because of various privacy concerns on account of a user. This paper aims to deal with incomplete data for fuzzy model identification, a new method of parameter estimation of a Takagi–Sugeno model in the presence of missing features.
Design/methodology/approach
In this work, authors proposed a three-fold approach for fuzzy model identification in which imputation-based linear interpolation technique is used to estimate missing features of the data, and then fuzzy c-means clustering is used for determining optimal number of rules and for the determination of parameters of membership functions of the fuzzy model. Finally, the optimization of the all antecedent and consequent parameters along with the width of the antecedent (Gaussian) membership function is done by gradient descent algorithm based on the minimization of root mean square error.
Findings
The proposed method is tested on two well-known simulation examples as well as on a real data set, and the performance is compared with some traditional methods. The result analysis and statistical analysis show that the proposed model has achieved a considerable improvement in accuracy in the presence of varying degree of data incompleteness.
Originality/value
The proposed method works well for fuzzy model identification method, a new method of parameter estimation of a Takagi–Sugeno model in the presence of missing features with varying degree of missing data as compared to some well-known methods.
Details
Keywords
Moêz Soltani and Abdelkader Chaari
The purpose of this paper is to present a new methodology for identification of the parameters of the local linear Takagi‐Sugeno fuzzy models using weighted recursive least…
Abstract
Purpose
The purpose of this paper is to present a new methodology for identification of the parameters of the local linear Takagi‐Sugeno fuzzy models using weighted recursive least squares. The weighted recursive least squares (WRLS) is sensitive to initialization which leads to no converge. In order to overcome this problem, Euclidean particle swarm optimization (EPSO) is employed to optimize the initial states of WRLS. Finally, validation results are given to demonstrate the effectiveness and accuracy of the proposed algorithm. A comparative study is presented. Validation results involving simulations of numerical examples and the liquid level process have demonstrated the practicality of the algorithm.
Design/methodology/approach
A new method for nonlinear system modelling. The proposed algorithm is employed to optimize the initial states of WRLS algorithm in two phases of learning algorithm.
Findings
The results obtained using this novel approach were comparable with other modeling approaches reported in the literature. The proposed algorithm is able to handle various types of modeling problems with high accuracy.
Originality/value
In this paper, a new method is employed to optimize the initial states of WRLS algorithm in two phases of the learning algorithm.
Details
Keywords
B. SPILLMAN, J. BEZDEK and R. SPILLMAN
After noting several limiting features and procedural disadvantages of typical game theoretic studies of coalition formation, a new measurement procedure based on fuzzy set theory…
Abstract
After noting several limiting features and procedural disadvantages of typical game theoretic studies of coalition formation, a new measurement procedure based on fuzzy set theory is described. A generalized Tanimoto coefficient measuring attitudinal similarity provides the fundamental basis for location and analysis of potential coalitions in a group decision‐making task. The results of a pilot study using fuzzy preference matrices and α‐level sets to determine the existence and structural evolution of coalitions over time are presented. Finally, some conjectures concerning the definition and future study of coalitions are advanced.
Aminah Robinson Fayek and Rodolfo Lourenzutti
Construction is a highly dynamic environment with numerous interacting factors that affect construction processes and decisions. Uncertainty is inherent in most aspects of…
Abstract
Construction is a highly dynamic environment with numerous interacting factors that affect construction processes and decisions. Uncertainty is inherent in most aspects of construction engineering and management, and traditionally, it has been treated as a random phenomenon. However, there are many types of uncertainty that are not naturally modelled by probability theory, such as subjectivity, ambiguity and vagueness. Fuzzy logic provides an approach for handling such uncertainties. However, fuzzy logic alone has some limitations, including its inability to learn from data and its extensive reliance on expert knowledge. To address these limitations, fuzzy logic has been combined with other techniques to create fuzzy hybrid techniques, which have helped solve complex problems in construction. In this chapter, a background on fuzzy logic in the context of construction engineering and management applications is presented. The chapter provides an introduction to uncertainty in construction and illustrates how fuzzy logic can improve construction modelling and decision-making. The role of fuzzy logic in representing uncertainty is contrasted with that of probability theory. Introductory material is presented on key definitions, properties and methods of fuzzy logic, including the definition and representation of fuzzy sets and membership functions, basic operations on fuzzy sets, fuzzy relations and compositions, defuzzification methods, entropy for fuzzy sets, fuzzy numbers, methods for the specification of membership functions and fuzzy rule-based systems. Finally, a discussion on the need for fuzzy hybrid modelling in construction applications is presented, and future research directions are proposed.