Mert Gülçür, Dmitry Isakov, Jérôme Charmet and Gregory J. Gibbons
This study aims to investigate the demoulding characteristics of material-jetted rapid mould inserts having different surface textures for micro-injection moulding using in-line…
Abstract
Purpose
This study aims to investigate the demoulding characteristics of material-jetted rapid mould inserts having different surface textures for micro-injection moulding using in-line measurements and surface metrology.
Design/methodology/approach
Material-jetted inserts with the negative cavity of a circular test product were fabricated using different surface finishes and printing configurations, including glossy, matte and vertical settings. In-line measurements included the recording of demoulding forces at 10 kHz, which was necessary to capture the highly-dynamic characteristics. A robust data processing algorithm was used to extract reliable demoulding energies per moulding run. Thermal imaging captured surface temperatures on the inserts after demoulding. Off-line measurements, including focus variation microscopy and scanning electron microscopy, compared surface textures after a total of 60 moulding runs.
Findings
A framework for capturing demoulding energies from material-jetted rapid tools was demonstrated and compared to the literature. Glossy surfaces resulted in significantly reduced demoulding forces compared to the industry standard steel moulds in the literature and their material-jetted counterparts. Minimal changes in the surface textures of the material-jetted inserts were found, which could potentially permit their prolonged usage. Significant correlations between surface temperatures and demoulding energies were demonstrated.
Originality/value
The research presented here addresses the very topical issue of demoulding characteristics of soft, rapid tools, which affect the quality of prototyped products and tool durability. This was done using state-of-the-art, high-speed sensing technologies in conjunction with surface metrology and their durability for the first time in the literature.
Details
Keywords
Mert Gülçür, Kevin Couling, Vannessa Goodship, Jérôme Charmet and Gregory J. Gibbons
The purpose of this study is to demonstrate and characterise a soft-tooled micro-injection moulding process through in-line measurements and surface metrology using a…
Abstract
Purpose
The purpose of this study is to demonstrate and characterise a soft-tooled micro-injection moulding process through in-line measurements and surface metrology using a data-intensive approach.
Design/methodology/approach
A soft tool for a demonstrator product that mimics the main features of miniature components in medical devices and microsystem components has been designed and fabricated using material jetting technique. The soft tool was then integrated into a mould assembly on the micro-injection moulding machine, and mouldings were made. Sensor and data acquisition devices including thermal imaging and injection pressure sensing have been set up to collect data for each of the prototypes. Off-line dimensional characterisation of the parts and the soft tool have also been carried out to quantify the prototype quality and dimensional changes on the soft tool after the manufacturing cycles.
Findings
The data collection and analysis methods presented here enable the evaluation of the quality of the moulded parts in real-time from in-line measurements. Importantly, it is demonstrated that soft-tool surface temperature difference values can be used as reliable indicators for moulding quality. Reduction in the total volume of the soft-tool moulding cavity was detected and quantified up to 100 cycles. Data collected from in-line monitoring was also used for filling assessment of the soft-tool moulding cavity, providing about 90% accuracy in filling prediction with relatively modest sensors and monitoring technologies.
Originality/value
This work presents a data-intensive approach for the characterisation of soft-tooled micro-injection moulding processes for the first time. The overall results of this study show that the product-focussed data-rich approach presented here proved to be an essential and useful way of exploiting additive manufacturing technologies for soft-tooled rapid prototyping and new product introduction.