Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 8 May 2018

Milan Omasta, Martin Ebner, Petr Šperka, Thomas Lohner, Ivan Krupka, Martin Hartl, Bernd-Robert Hoehn and Karsten Stahl

The purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication…

230

Abstract

Purpose

The purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication mechanism is well described in lightly loaded conformal contacts such as journal bearings; however, only a little has been published about the application to highly loaded contacts under elastohydrodynamic lubrication regime (EHL).

Design/methodology/approach

Thin film colorimetric interferometry is used to describe the effect of different operating conditions on lubricant film formation in line contacts.

Findings

Under fully flooded conditions, the effect of porous structure can be mainly traced back to the different elastic properties. When the contact is lubricated only by oil bleeding from the oil-impregnated sintered material, starvation is likely to occur. It is indicated that lubricant film thickness is mainly governed by oil bleeding capacity. The relationship between oil starvation parameters corresponds well with classic starved EHL theory.

Practical implications

To show practical, relevant limitations of the considered self-lubrication system, time tests were conducted. The findings indicate that EHL contact with oil-impregnated sintered material may provide about 40 per cent of fully flooded film thickness.

Originality/value

For the first time, the paper presents results on the EHL film-forming capability of oil-impregnated sintered material by measuring the lubricant film thickness directly. The present paper identifies the phenomena involved, which is necessary for the understanding of the behavior of this complex tribological system.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 17 November 2021

Xingxing Fang, Dahan Li, Yucheng Xin, Songquan Wang, Yongbo Guo, Ningning Hu and Dekun Zhang

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait…

84

Abstract

Purpose

The purpose of this paper is to systematically study the dynamic contact stress, frictional heat and temperature field of femoral head-on-acetabular cup contact pairs in a gait cycle.

Design/methodology/approach

In this paper, four common femoral head-on-acetabular cup contact pairs are used as the research objects, mathematical calculations and finite element simulations are adopted. The contact model of hip joint head and acetabular cup was established by finite element simulation to analyze the stress and temperature distribution of the contact interface.

Findings

The results show that the contact stress of the head-on-cup interface is inversely proportional to the contact area; high contact stress directly leads to greater frictional heat. However, hip joints with metal-on-polyethylene or ceramic-on-polyethylene paired interfaces have lower frictional heat and show a significant temperature rise in one gait cycle, which may be related to the material properties of the acetabular cup.

Originality/value

Previous studies about calculating the interface frictional heat always ignore the dynamic change process in the contact load and the contact area. This study considered the dynamic changes of the contact stress and area of the femoral head-on-acetabular cup interface, and four common contact pairs were systematically analyzed.

1 – 2 of 2
Per page
102050