Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 19 July 2019

Islam A. ElShaarawy, Essam H. Houssein, Fatma Helmy Ismail and Aboul Ella Hassanien

The purpose of this paper is to propose an enhanced elephant herding optimization (EEHO) algorithm by improving the exploration phase to overcome the fast-unjustified convergence…

228

Abstract

Purpose

The purpose of this paper is to propose an enhanced elephant herding optimization (EEHO) algorithm by improving the exploration phase to overcome the fast-unjustified convergence toward the origin of the native EHO. The exploration and exploitation of the proposed EEHO are achieved by updating both clan and separation operators.

Design/methodology/approach

The original EHO shows fast unjustified convergence toward the origin specifically, a constant function is used as a benchmark for inspecting the biased convergence of evolutionary algorithms. Furthermore, the star discrepancy measure is adopted to quantify the quality of the exploration phase of evolutionary algorithms in general.

Findings

In experiments, EEHO has shown a better performance of convergence rate compared with the original EHO. Reasons behind this performance are: EEHO proposes a more exploitative search method than the one used in EHO and the balanced control of exploration and exploitation based on fixing clan updating operator and separating operator. Operator γ is added to EEHO assists to escape from local optima, which commonly exist in the search space. The proposed EEHO controls the convergence rate and the random walk independently. Eventually, the quantitative and qualitative results revealed that the proposed EEHO outperforms the original EHO.

Research limitations/implications

Therefore, the pros and cons are reported as follows: pros of EEHO compared to EHO – 1) unbiased exploration of the whole search space thanks to the proposed update operator that fixed the unjustified convergence of the EHO toward the origin and the proposed separating operator that fixed the tendency of EHO to introduce new elephants at the boundary of the search space; and 2) the ability to control exploration–exploitation trade-off by independently controverting the convergence rate and the random walk using different parameters – cons EEHO compared to EHO: 1) suitable values for three parameters (rather than two only) have to be found to use EEHO.

Originality/value

As the original EHO shows fast unjustified convergence toward the origin specifically, the search method adopted in EEHO is more exploitative than the one used in EHO because of the balanced control of exploration and exploitation based on fixing clan updating operator and separating operator. Further, the star discrepancy measure is adopted to quantify the quality of exploration phase of evolutionary algorithms in general. Operator γ that added EEHO allows the successive local and global searching (exploration and exploitation) and helps escaping from local minima that commonly exist in the search space.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

1 – 2 of 2
Per page
102050