Search results
1 – 2 of 2Okechukwu Okechukwu Onukwuli, Benson Chinweuba Udeh, Monday Omotioma and Ikechukwu Abuchi Nnanwube
The purpose of this study was to investigate cimetidine as corrosion inhibitor of aluminium in hydrochloric acid medium.
Abstract
Purpose
The purpose of this study was to investigate cimetidine as corrosion inhibitor of aluminium in hydrochloric acid medium.
Design/methodology/approach
Cimetidine was characterized by gas chromatography mass spectrophotometer and Fourier transform infrared spectroscopy to determine its chemical composition and functional groups, respectively. Gravimetric, potentiodynamic polarization and electrochemical impedance spectroscopic techniques were used in the corrosion inhibition process. Thermodynamic and adsorption parameters were evaluated. And response surface methodology was used to optimize the corrosion inhibition process.
Findings
Analysis of the results revealed that major constituents of cimetidine include metronidazole, n-hexadecanoic acid cyclohexane and methyl ester. It has C-H stretch, C = N stretch, CH3C-H bend, ring C = C stretch, -C-O-O stretch, N-H bend, C-O stretch and C-H bend as predominant functional groups. Adsorption of molecules of the inhibitor on the aluminium surface was spontaneous, and it followed mechanism of physical adsorption. Response surface methodology revealed that quadratic model adequately described the inhibition efficiency of cimetidine as function of inhibitor concentration, temperature and time. Chemical and electrochemical results are in agreement that the cimetidine is a viable corrosion inhibitor. Cimetidine was revealed as mixed-type inhibitor because it controlled both cathodic and anodic reactions.
Originality/value
Empirical and optimization studies of cimetidine drug as corrosion inhibitor of aluminium in hydrochloric acid medium were carried out. The research results can provide the basis for deploying drugs (with mucosal protective and antacid properties) for corrosion control of metallic structures.
Details
Keywords
Uchenna Luvia Ezeamaku, Innocent Eze, Nkiru Odimegwu, Angela Nwakaudu, Amarachukwu Okafor, Okechukwu Dominic Onukwuli and Ikechukwu Abuchi Nnanwube
The purpose of this study is to investigate starch mucor (SM) in potassium iodide (KI) as corrosion inhibitor of aluminium in hydrochloric acid (HCl) medium.
Abstract
Purpose
The purpose of this study is to investigate starch mucor (SM) in potassium iodide (KI) as corrosion inhibitor of aluminium in hydrochloric acid (HCl) medium.
Design/methodology/approach
The SM in KI was characterized by gravimetric, scanning electron microscopy, electrochemical impedance spectroscopy measurements, potentiodynamic polarization and gas chromatography-mass spectrometer techniques. The inhibition efficiency was optimized using response surface methodology.
Findings
The result revealed that the inhibitor inhibited corrosion at a low concentration with the rate of inhibition increasing as the concentration of the inhibitor increased. The inhibition efficiency increases as the temperature was increased with slight incorporation of the inhibitor (SM in KI). This indicates that the corrosion control is both inhibitor (SM in KI) and temperature dependent.
Originality/value
The research results can provide the basis for using SM in KI as corrosion inhibitor of aluminium in HCL medium. Mixed-type inhibitor nature of SM was proved by cathodic and anodic nature of the polarization curves.
Details