Search results
1 – 10 of 337AmirMahyar Khorasani, Ian Gibson, Moshe Goldberg and Guy Littlefair
The purpose of this paper is to improve the manufacturing of a prosthetic acetabular shell by analyzing the main factors leading to failure during the selective laser melting…
Abstract
Purpose
The purpose of this paper is to improve the manufacturing of a prosthetic acetabular shell by analyzing the main factors leading to failure during the selective laser melting (SLM) additive manufacturing (AM) process.
Design/methodology/approach
Different computer-aided design and computer-aided manufacturing processes have been applied to fabricate acetabular parts. Then, various investigations into surface quality, mechanical properties and microstructure have been carried out to scrutinize the possible limitations in fabrication.
Findings
Geometrical measurements showed 1.59 and 0.27 per cent differences between the designed and manufactured prototypes for inside and outside diameter, respectively. However, resulting studies showed that unstable surfaces, cracks, an interruption in powder delivery and low surface quality were the main problems that occurred during this process. These results indicate that SLM is an accurate and promising method for production of intricate shapes, provided that the appropriate settings of production conditions are considered to minimize possible limitations.
Originality/value
The contributions of this paper are discussions covering different issues in the AM fabrication of acetabular shells to improve the mechanical properties, quality and durability of the produced parts.
Details
Keywords
AmirMahyar Khorasani, Ian Gibson, Moshe Goldberg and Guy Littlefair
The purpose of this study was to conduct various heat treatments (HT) such as stress relief annealing, mill annealing, recrystallization (Ī± + Ī²) annealing and Ī² annealing followed…
Abstract
Purpose
The purpose of this study was to conduct various heat treatments (HT) such as stress relief annealing, mill annealing, recrystallization (Ī± + Ī²) annealing and Ī² annealing followed by furnace cooling (FC) that were implemented to determine the effect of these on mechanical properties and the microstructure of selective laser melted and wrought samples. The mentioned annealings have been carried out to achieve the related standards in the fabrication of surgery implants.
Design/methodology/approach
In this paper, based on F2924-14 ASTM standard SLM and conventionally wrought parts were prepared. Then HT was performed and different characteristics such as microstructure, mechanical properties, macro-hardness and fracture surface for selective laser melted and wrought parts were analysed.
Findings
The results show that the high cooling rate in selective laser melting (SLM) generates finer grains. Therefore, tensile strength and hardness increase along with a reduction in ductility was noticed. Recrystallization annealing appears to give the best combination of ductility, strength and hardness for selective laser melted parts, whilst for equivalent wrought samples, increasing HT temperature results in reduction of mechanical properties.
Originality/value
The contributions of this paper are discussing the effect of different annealing on mechanical properties and microstructural evolution based on new ASTM standards for selective laser melted samples and comparing them with wrought parts.
Details
Keywords
Mahyar Khorasani, Ian Gibson, Amir Hossein Ghasemi, Elahe Hadavi and Bernard Rolfe
The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing…
Abstract
Purpose
The purpose of this study is, to compare laser-based additive manufacturing and subtractive methods. Laser-based manufacturing is a widely used, noncontact, advanced manufacturing technique, which can be applied to a very wide range of materials, with particular emphasis on metals. In this paper, the governing principles of both laser-based subtractive of metals (LB-SM) and laser-based powder bed fusion (LB-PBF) of metallic materials are discussed and evaluated in terms of performance and capabilities. Using the principles of both laser-based methods, some new potential hybrid additive manufacturing options are discussed.
Design methodology approach
Production characteristics, such as surface quality, dimensional accuracy, material range, mechanical properties and applications, are reviewed and discussed. The process parameters for both LB-PBF and LB-SM were identified, and different factors that caused defects in both processes are explored. Advantages, disadvantages and limitations are explained and analyzed to shed light on the process selection for both additive and subtractive processes.
Findings
The performance of subtractive and additive processes is highly related to the material properties, such as diffusivity, reflectivity, thermal conductivity as well as laser parameters. LB-PBF has more influential factors affecting the quality of produced parts and is a more complex process. Both LB-SM and LB-PBF are flexible manufacturing methods that can be applied to a wide range of materials; however, they both suffer from low energy efficiency and production rate. These may be useful when producing highly innovative parts detailed, hollow products, such as medical implants.
Originality value
This paper reviews the literature for both LB-PBF and LB-SM; nevertheless, the main contributions of this paper are twofold. To the best of the authorsā knowledge, this paper is one of the first to discuss the effect of the production process (both additive and subtractive) on the quality of the produced components. Also, some options for the hybrid capability of both LB-PBF and LB-SM are suggested to produce complex components with the desired macro- and microscale features.
Details
Keywords
The purpose of this paper is to discuss the current state-of-the-art in additive manufacturing, more commonly known as 3D printing, from the business perspectives. The primary…
Abstract
Purpose
The purpose of this paper is to discuss the current state-of-the-art in additive manufacturing, more commonly known as 3D printing, from the business perspectives. The primary drivers behind the development of the associated technologies are considered along with features that limit growth.
Design/methodology/approach
The approach is a personal perspective, based on approximately 25-years study of the development of the associated technologies and applications.
Findings
The discussion has found that the technology is still growing healthily, but with an understanding that there are numerous application areas that should be considered separately. Some areas are significantly more mature than others and success in some areas does not guarantee success in others.
Originality/value
This viewpoint has been prepared for the current state-of-the-art and can be compared with earlier viewpoints to see how things may have changed in the past. This should be of value to those interested to explore how the technology has developed in recent times and how it may move into the future.
Details
Keywords
Mahyar Khorasani, Jennifer Loy, Amir Hossein Ghasemi, Elmira Sharabian, Martin Leary, Hamed Mirafzal, Peter Cochrane, Bernard Rolfe and Ian Gibson
This paper reviews the synergy of Industry 4.0 and additive manufacturing (AM) and discusses the integration of data-driven manufacturing systems and product service systems as a…
Abstract
Purpose
This paper reviews the synergy of Industry 4.0 and additive manufacturing (AM) and discusses the integration of data-driven manufacturing systems and product service systems as a key component of the Industry 4.0 revolution. This paper aims to highlight the potential effects of Industry 4.0 on AM via tools such as digitalisation, data transfer, tagging technology, information in Industry 4.0 and intelligent features.
Design/methodology/approach
In successive phases of industrialisation, there has been a rise in the use of, and dependence on, data in manufacturing. In this review of Industry 4.0 and AM, the five pillars of success that could see the Internet of Things (IoT), artificial intelligence, robotics and materials science enabling new levels of interactivity and interdependence between suppliers, producers and users are discussed. The unique effects of AM capabilities, in particular mass customisation and light-weighting, combined with the integration of data and IoT in Industry 4.0, are studied for their potential to support higher efficiencies, greater utility and more ecologically friendly production. This research also illustrates how the digitalisation of manufacturing for Industry 4.0, through the use of IoT and AM, enables new business models and production practices.
Findings
The discussion illustrates the potential of combining IoT and AM to provide an escape from the constraints and limitations of conventional mass production whilst achieving economic and ecological savings. It should also be noted that this extends to the agile design and fabrication of increasingly complex parts enabled by simulations of complex production processes and operating systems. This paper also discusses the relationship between Industry 4.0 and AM with respect to improving the quality and robustness of product outcomes, based on real-time data/feedback.
Originality/value
This research shows how a combined approach to research into IoT and AM can create a step change in practice that alters the production and supply paradigm, potentially reducing the ecological impact of industrial systems and product life cycle. This paper demonstrates how the integration of Industry 4.0 and AM could reshape the future of manufacturing and discusses the challenges involved.
Details
Keywords
Mehrshad Mehrpouya, Daniel Tuma, Tom Vaneker, Mohamadreza Afrasiabi, Markus Bambach and Ian Gibson
This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It…
Abstract
Purpose
This study aims to provide a comprehensive overview of the current state of the art in powder bed fusion (PBF) techniques for additive manufacturing of multiple materials. It reviews the emerging technologies in PBF multimaterial printing and summarizes the latest simulation approaches for modeling them. The topic of āmultimaterial PBF techniquesā is still very new, undeveloped, and of interest to academia and industry on many levels.
Design/methodology/approach
This is a review paper. The study approach was to carefully search for and investigate notable works and peer-reviewed publications concerning multimaterial three-dimensional printing using PBF techniques. The current methodologies, as well as their advantages and disadvantages, are cross-compared through a systematic review.
Findings
The results show that the development of multimaterial PBF techniques is still in its infancy as many fundamental āresearchā questions have yet to be addressed before production. Experimentation has many limitations and is costly; therefore, modeling and simulation can be very helpful and is, of course, possible; however, it is heavily dependent on the material data and computational power, so it needs further development in future studies.
Originality/value
This work investigates the multimaterial PBF techniques and discusses the novel printing methods with practical examples. Our literature survey revealed that the number of accounts on the predictive modeling of stresses and optimizing laser scan strategies in multimaterial PBF is low with a (very) limited range of applications. To facilitate future developments in this direction, the key information of the simulation efforts and the state-of-the-art computational models of multimaterial PBF are provided.
Details
Keywords
Mahyar Khorasani, AmirHossein Ghasemi, Bernard Rolfe and Ian Gibson
Additive manufacturing (AM) offers potential solutions when conventional manufacturing reaches its technological limits. These include a high degree of design freedom, lightweight…
Abstract
Purpose
Additive manufacturing (AM) offers potential solutions when conventional manufacturing reaches its technological limits. These include a high degree of design freedom, lightweight design, functional integration and rapid prototyping. In this paper, the authors show how AM can be implemented not only for prototyping but also production using different optimization approaches in design including topology optimization, support optimization and selection of part orientation and part consolidation. This paper aims to present how AM can reduce the production cost of complex components such as jet engine air manifold by optimizing the design. This case study also identifies a detailed feasibility analysis of the cost model for an air manifold of an Airbus jet engine using various strategies, such as computer numerical control machining, printing with standard support structures and support optimization.
Design/methodology/approach
Parameters that affect the production price of the air manifold such as machining, printing (process), feedstock, labor and post-processing costs were calculated and compared to find the best manufacturing strategy.
Findings
Results showed that AM can solve a range of problems and improve production by customization, rapid prototyping and geometrical freedom. This case study showed that 49%ā58% of the cost is related to pre- and post-processing when using laser-based powder bed fusion to produce the air manifold. However, the cost of pre- and post-processing when using machining is 32%ā35% of the total production costs. The results of this research can assist successful enterprises, such as aerospace, automotive and medical, in successfully turning toward AM technology.
Originality/value
Important factors such as validity, feasibility and limitations, pre-processing and monitoring, are discussed to show how a process chain can be controlled and run efficiently. Reproducibility of the process chain is debated to ensure the quality of mass production lines. Post-processing and qualification of the AM parts are also discussed to show how to satisfy the demands on standards (for surface quality and dimensional accuracy), safety, quality and certification. The original contribution of this paper is identifying the main production costs of complex components using both conventional and AM.
Details
Keywords
Suvash Chandra Paul, Gideon P.A.G. van Zijl, Ming Jen Tan and Ian Gibson
Three-dimensional printing of concrete (3DPC) has a potential for the rapid industrialization of the housing sector, with benefits of reduced construction time due to no formwork…
Abstract
Purpose
Three-dimensional printing of concrete (3DPC) has a potential for the rapid industrialization of the housing sector, with benefits of reduced construction time due to no formwork requirement, ease of construction of complex geometries, potential high construction quality and reduced waste. Required materials adaption for 3DPC is within reach, as concrete materials technology has reached the point where performance-based specification is possible by specialists. This paper aims to present an overview of the current status of 3DPC for construction, including existing printing methods and material properties required for robustness of 3DPC structures or structural elements.
Design/methodology/approach
This paper has presented an overview of three categories of 3DPC systems, namely, gantry, robotic and crane systems. Material compositions as well as fresh and hardened properties of mixes currently used for 3DPC have been elaborated.
Findings
This paper presents an overview of the state of the art of 3DPC systems and materials. Research needs, including reinforcement in the form of bars or fibres in the 3D printable cement-based materials, are also addressed.
Originality/value
The critical analysis of the 3D concrete printing system and materials described in this review paper is original.
Details
Keywords
Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe
This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…
Abstract
Purpose
This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.
Design/methodology/approach
In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.
Findings
The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.
Originality/value
This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.
Details
Keywords
Moontaha Farin, Jarin Tasnim Maisha, Ian Gibson and M. Tarik Arafat
Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the…
Abstract
Purpose
Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the health-care industry due to its strength to manufacture custom-designed and personalized 3D constructs. Recently, AM technologies are being explored to develop personalized drug delivery systems, such as personalized oral dosages, implants and others due to their potential to design and develop systems with complex geometry and programmed controlled release profile. Furthermore, in 2015, the US Food and Drug Administration approved the first AM medication, SpritamĀ® (Apprecia Pharmaceuticals) which has led to tremendous interest in exploring this technology as a bespoke solution for patient-specific drug delivery systems. The purpose of this study is to provide a comprehensive overview of AM technologies applied to the development of personalized drug delivery systems, including an analysis of the commercial status of AM based drugs and delivery devices.
Design/methodology/approach
This review paper provides a detailed understanding of how AM technologies are used to develop personalized drug delivery systems. Different AM technologies and how these technologies can be chosen for a specific drug delivery system are discussed. Different types of materials used to manufacture personalized drug delivery systems are also discussed here. Furthermore, recent preclinical and clinical trials are discussed. The challenges and future perceptions of personalized medicine and the clinical use of these systems are also discussed.
Findings
Substantial works are ongoing to develop personalized medicine using AM technologies. Understanding the regulatory requirements is needed to establish this area as a point-of-care solution for patients. Furthermore, scientists, engineers and regulatory agencies need to work closely to successfully translate the research efforts to clinics.
Originality/value
This review paper highlights the recent efforts of AM-based technologies in the field of personalized drug delivery systems with an insight into the possible future direction.
Details