Hongtuo Liu, Fangwei Xie, Kai Zhang, Xinxing Zhang, Jin Zhang, Cuntang Wang and Hao Li
The shock absorber is an important component of vehicle suspension that attenuates the vehicle vibration. Its running state directly affects the performance of the vehicle…
Abstract
Purpose
The shock absorber is an important component of vehicle suspension that attenuates the vehicle vibration. Its running state directly affects the performance of the vehicle suspension. The purpose of this paper is to quantitatively study the relationship between damping characteristics and air chamber and oil properties in single-tube pneumatic shock absorber.
Design/methodology/approach
Combined with the principle of fluid dynamics and hydraulic transmission technology, the rebound stroke and compression stroke mathematical models, and damping characteristics simulation model are established to investigate the effect of the air chamber and oil property on damping characteristics.
Findings
Research results show that the initial pressure of the air chamber is the key parameter which influences the damping characteristics of the shock absorber. The change of the initial pressure has more impact on damping force, and less impact on the speed characteristic; the initial volume of the air chamber almost has no effect on the damping characteristics. The density and viscosity of the oil have certain influence on the damping characteristics. Therefore, selecting suitable damping oil is very important.
Originality/value
Using Matlab/Simulink software to build simulation models, its results are very accurate. The conclusions can provide a theoretical reference for the structure design of a single-tube pneumatic shock absorber.
Details
Keywords
Erming Ding, Fangwei Xie, Heng Dai, Qingsong Gao, Jin Zhang, Yixian Feng and Hongtuo Liu
In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to…
Abstract
Purpose
In order to improve the ride comfort of vehicle suspension, this paper first proposed a shock absorber with four-stage adjustable damping forces. The purpose of this paper is to validate its modeling and characteristics, indicator diagrams and velocity diagrams, which are the main research points.
Design/methodology/approach
In order to validate the fluid flow modeling, a series of mathematical modeling is established and solved by using Matlab/Simulink. An experiment rig based on electro-hydraulic loading servo system is designed to test the prototype. Finally, indicator diagram and velocity diagram are obtained and compared both in simulation and experiments.
Findings
Results indicate that at the same damping position, damping force will increase with the rise of rod’s velocity: if the rod’s velocity is fixed, the damping force changes apparently by altering the damping position. The shock absorber is softest at damping position 1, and it is hardest at damping position 4; although there is no any badly empty stroke and skewness in indicator diagram by simulation, a temporary empty stroke happens at maximum displacement of piston rob, both in rebound and compression strokes.
Research limitations/implications
Compared with results of the simulation and experiments, the design of a four-stage damping adjustable shock absorber (FDASA) is validated correctly in application, and may improve the overall dynamic performance of vehicle.
Originality/value
This paper is mainly focused on the design and testing of an FDASA, which may obtain four-stages damping characteristics, that totally has a vital importance to improve the performance of vehicle suspension.