Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 20 December 2021

Sahin Namli, Hilal Samut and Yesim Soyer

This study aimed to investigate how enteric pathogens and their biofilm populations on fresh produce survive according to time that contamination has occurred on leaves and…

278

Abstract

Purpose

This study aimed to investigate how enteric pathogens and their biofilm populations on fresh produce survive according to time that contamination has occurred on leaves and contamination route: seed irrigation water.

Design/methodology/approach

Cress was contaminated in two different ways: contamination of seeds and irrigation water with 8-log MPN/mL bacterial load, Salmonella Newport, Escherichia coli O157:H7, O104:H4 or O78:H2. While contaminated seeds were cultivated for seed contamination, contaminated irrigation was applied at the end of each week to separate groups of samples obtained from cultivated surface-sterile seeds to understand how long these pathogens could survive until harvest.

Findings

The results indicated these pathogens survived until harvest, and formed biofilms on cress leaves grown using both contaminated seeds and irrigation water. No significant difference was observed among populations of Salmonella and E. coli groups in terms of survival (∼4.5–6.0 log MPN/g) and biofilm formation (∼4.4–5.7 log MPN/g) for contamination by seed. Also, SEM images revealed biofilm-like structures, the proofs of the attachment of these pathogens on leaf surfaces.

Originality/value

From our knowledge this is the first study focusing on the survival and biofilm formation of one Salmonella serotype (Newport) and three E. coli serotypes (O157:H7, O104:H4, and O78:H2), representing enterohemorrhagic and enteroaggregative E. coli pathogenic subgroups, under the same irrigation and growth schemes. Furthermore, this study mimics the contamination of seeds and irrigation water with sewage or wastewater and may shed light on contamination of fresh produce grown using poor wastewater treatment.

Details

British Food Journal, vol. 124 no. 11
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 1 of 1
Per page
102050