Search results
1 – 3 of 3Hayet Soltani, Jamila Taleb, Fatma Ben Hamadou and Mouna Boujelbène-Abbes
This study investigates clean energy, commodities, green bonds and environmental, social and governance (ESG) index prices forecasting and assesses the predictive performance of…
Abstract
Purpose
This study investigates clean energy, commodities, green bonds and environmental, social and governance (ESG) index prices forecasting and assesses the predictive performance of various factors on these asset prices, used for the development of a robust forecasting support decision model using machine learning (ML) techniques. More specifically, we explore the impact of the financial stress on forecasting price.
Design/methodology/approach
We utilize feature selection techniques to evaluate the predictive efficacy of various factors on asset prices. Moreover, we have developed a forecasting model for these asset prices by assessing the accuracy of two ML models: specifically, the deep learning long short-term memory (LSTM) neural networks and the extreme gradient boosting (XGBoost) model. To check the robustness of the study results, the authors referred to bootstrap linear regression as an alternative traditional method for forecasting green asset prices.
Findings
The results highlight the significance of financial stress in enhancing price forecast accuracy, with the financial stress index (FSI) and panic index (PI) emerging as primary determinants. In terms of the forecasting model's accuracy, our analysis reveals that the LSTM outperformed the XGBoost model, establishing itself as the most efficient algorithm among the two tested.
Practical implications
This research enhances comprehension, which is valuable for both investors and policymakers seeking improved price forecasting through the utilization of a predictive model.
Originality/value
To the authors' best knowledge, this marks the inaugural attempt to construct a multivariate forecasting model. Indeed, the development of a robust forecasting model utilizing ML techniques provides practical value as a decision support tool for shaping investment strategies.
Details
Keywords
Hayet Soltani, Jamila Taleb and Mouna Boujelbène Abbes
This paper aims to analyze the connectedness between Gulf Cooperation Council (GCC) stock market index and cryptocurrencies. It investigates the relevant impact of RavenPack COVID…
Abstract
Purpose
This paper aims to analyze the connectedness between Gulf Cooperation Council (GCC) stock market index and cryptocurrencies. It investigates the relevant impact of RavenPack COVID sentiment on the dynamic of stock market indices and conventional cryptocurrencies as well as their Islamic counterparts during the onset of the COVID-19 crisis.
Design/methodology/approach
The authors rely on the methodology of Diebold and Yilmaz (2012, 2014) to construct network-associated measures. Then, the wavelet coherence model was applied to explore co-movements between GCC stock markets, cryptocurrencies and RavenPack COVID sentiment. As a robustness check, the authors used the time-frequency connectedness developed by Barunik and Krehlik (2018) to verify the direction and scale connectedness among these markets.
Findings
The results illustrate the effect of COVID-19 on all cryptocurrency markets. The time variations of stock returns display stylized fact tails and volatility clustering for all return series. This stressful period increased investor pessimism and fears and generated negative emotions. The findings also highlight a high spillover of shocks between RavenPack COVID sentiment, Islamic and conventional stock return indices and cryptocurrencies. In addition, we find that RavenPack COVID sentiment is the main net transmitter of shocks for all conventional market indices and that most Islamic indices and cryptocurrencies are net receivers.
Practical implications
This study provides two main types of implications: On the one hand, it helps fund managers adjust the risk exposure of their portfolio by including stocks that significantly respond to COVID-19 sentiment and those that do not. On the other hand, the volatility mechanism and investor sentiment can be interesting for investors as it allows them to consider the dynamics of each market and thus optimize the asset portfolio allocation.
Originality/value
This finding suggests that the RavenPack COVID sentiment is a net transmitter of shocks. It is considered a prominent channel of shock spillovers during the health crisis, which confirms the behavioral contagion. This study also identifies the contribution of particular interest to fund managers and investors. In fact, it helps them design their portfolio strategy accordingly.
Details
Keywords
Hayet Soltani and Mouna Boujelbene Abbes
This study aims to investigate the impact of the COVID-19 pandemic on both of stock prices and investor's sentiment in China during the onset of the COVID-19 crisis.
Abstract
Purpose
This study aims to investigate the impact of the COVID-19 pandemic on both of stock prices and investor's sentiment in China during the onset of the COVID-19 crisis.
Design/methodology/approach
In this study, the ADCC-GARCH model was used to analyze the asymmetric volatility and the time-varying conditional correlation among the Chinese stock market, the investors' sentiment and its variation. The authors relied on Diebold and Yilmaz (2012, 2014) methodology to construct network-associated measures. Then, the wavelet coherence model was applied to explore the co-movements between these variables. To check the robustness of the study results, the authors referred to the RavenPack COVID sentiments and the Chinese VIX, as other measures of the investor's sentiment using daily data from December 2019 to December 2021.
Findings
Using the ADCC-GARCH model, a strong co-movement was found between the investor's sentiment and the Shanghai index returns during the COVID-19 pandemic. The study results provide a significant peak of connectivity between the investor's sentiment and the Chinese stock market return during the 2015–2016 and the end of 2019–2020 turmoil periods. These periods coincide, respectively, with the 2015 Chinese economy recession and the COVID-19 pandemic outbreak. Furthermore, the wavelet coherence analysis confirms the ADCC results, which revealed that the used proxies of the investor's sentiment can detect the Chinese investors' behavior especially during the health crisis.
Practical implications
This study provides two main types of implications: on the one hand, for investors since it helps them to understand the economic outlook and accordingly design their portfolio strategy and allocate decisions to optimize their portfolios. On the other hand, for portfolios managers, who should pay attention to the volatility spillovers between investor sentiment and the Chinese stock market to predict the financial market dynamics during crises periods and hedge their portfolios.
Originality/value
This study attempted to examine the time-varying interactions between the investor's sentiment proxies and the stock market dynamics. Findings showed that the investor's sentiment is considered a prominent channel of shock spillovers during the COVID-19 crisis, which typically confirms the behavioral contagion theory.
Details