Hassan Heidari-Fathian and Hamed Davari-Ardakani
This study aims to deal with a project portfolio selection problem aiming to maximize the net present value of the project portfolio and minimize the resource usage variation…
Abstract
Purpose
This study aims to deal with a project portfolio selection problem aiming to maximize the net present value of the project portfolio and minimize the resource usage variation between successive time periods.
Design/methodology/approach
A bi-objective mixed integer programming model is presented under resource constraints. The parameters related to outlays and net cash flows of existing and new projects are considered to be uncertain. An augmented ε-constraint (AUGMECON) method is used to solve the proposed model, and a fuzzy approach is used to find the most preferred Pareto-optimal solutions among those generated by AUGMECON method. The effectiveness of the proposed solution method is compared with three other multi-objective optimization methods. Finally, some sensitivity analyses are performed to assess the effect of changing a number of parameters on the values of objective functions.
Findings
The proposed approach helps corporations make optimal decisions for rebalancing their project portfolio, through launching some new candidate projects and upgrading some of the existing projects.
Originality/value
A novel bi-objective optimization model is proposed for designing a project portfolio problem under budget constraints and profit risk controls. Two types of projects including existing and new projects are considered in the problem. Minimization of resource usage variation between successive periods is considered in the model as one objective function. An AUGMECON method is used to solve the proposed bi-objective mathematical model. A fuzzy approach is applied to find the best Pareto-optimal solutions of AUGMECON method. Results of the proposed solution approach are compared with three other multi-objective decision-making methods in different numerical examples.
Details
Keywords
Tooraj Karimi and Arvin Hojati
The purpose of this paper is to design an inference engine to measure the level of readiness of each bank before starting the corporate sustainability auditing process. Based on…
Abstract
Purpose
The purpose of this paper is to design an inference engine to measure the level of readiness of each bank before starting the corporate sustainability auditing process. Based on the output of the designed inference engine, the audition team can decide about the audition resources and the auditing process.
Design/methodology/approach
In this paper, the hybrid rough and grey set theory are used to design and create a rule model system to measure the sustainability level of banks. First, 16 rule models are extracted using rough set theory (RST), and the cross-validation of each model is done. Then, the grey clustering is used to combine the same condition attributes and improve the validity of the final model. A total of 16 new rule models are extracted based on the decreased condition attributes, and the best model is selected based on the cross-validation results.
Findings
By comparing the accuracy of rough-gray’s rule models and as a result of decreasing the condition attributes, a proper increase in the accuracy of all models is obtained. Finally, the Naive/Genetic/object-related reducts model with 95.6% accuracy is selected as an inference engine to measure new banks’ readiness level.
Originality/value
Sustainability measurement of banks based on RST is a new approach in the field of corporate sustainability. Furthermore, using the grey clustering for combining the condition attributes is a novel solution for improving the accuracy of the rule models.
Details
Keywords
Gokhan Agac, Birdogan Baki and Ilker Murat Ar
The purpose of this study is to systematically review the existing literature on the blood supply chain (BSC) from a network design perspective and highlight the research gaps in…
Abstract
Purpose
The purpose of this study is to systematically review the existing literature on the blood supply chain (BSC) from a network design perspective and highlight the research gaps in this area. Moreover, it also aims to pinpoint new research opportunities based on the recent innovative technologies for the BSC network design.
Design/methodology/approach
The study gives a comprehensive systematic review of the BSC network design studies until October 2021. This review was carried out in accordance with preferred reporting items for systematic reviews and meta-analyses (PRISMA). In the literature review, a total of 87 studies were analyzed under six main categories as model structure, application model, solution approach, problem type, the parties of the supply chain and innovative technologies.
Findings
The results of the study present the researchers’ tendencies and preferences when designing their BSC network models.
Research limitations/implications
The study presents a guide for researchers and practitioners on BSC from the point of view of network design and encourages adopting innovative technologies in their BSC network designs.
Originality/value
The study provides a comprehensive systematic review of related studies from the BSC network design perspective and explores research gaps in the collection and distribution processes. Furthermore, it addresses innovative research opportunities by using innovative technologies in the area of BSC network design.