Haoping Chen and Alfred V. Tran
China has undergone significant economic reform since 1978. The transformation from a centrally planned economy to a socialist market economy created the need for corresponding…
Abstract
China has undergone significant economic reform since 1978. The transformation from a centrally planned economy to a socialist market economy created the need for corresponding reform of the accounting regulatory framework. The accounting reform has culminated in the promulgation of the Enterprise Accounting Standard by the PRC Ministry of Finance effective from July 1, 1993. This review article analyzes the reasons for the recent accounting reform in China and its direction towards harmonization with international accounting standards and practices. The old and the new accounting regulatory frameworks are compared and contrasted. Some problems and prospects also are discussed.
Xingyang Chen, Linlin Ma, Haoping Xie, Fengting Zhao, Yufeng Ye and Lin Zhang
The purpose of this paper is to present a crack initiation mechanism of the external hydrogen effect on type 304 stainless steel, as well as on fatigue crack propagation in the…
Abstract
Purpose
The purpose of this paper is to present a crack initiation mechanism of the external hydrogen effect on type 304 stainless steel, as well as on fatigue crack propagation in the presence of hydrogen gas.
Design/methodology/approach
The effects of external hydrogen on hydrogen-assisted crack initiation in type 304 stainless steel were discussed by performing fatigue crack growth rate and fatigue life tests in 5 MPa argon and hydrogen.
Findings
Hydrogen can reduce the incubation period of fatigue crack initiation of smooth fatigue specimens and greatly promote the fatigue crack growth rate during the subsequent fatigue cycle. During the fatigue cycle, hydrogen invades into matrix through the intrusion and extrusion and segregates at the boundaries of α′ martensite and austenite. As the fatigue cycle increased, hydrogen-induced cracks would initiate along the slip bands. The crack initiation progress would greatly accelerate in the presence of hydrogen.
Originality/value
To the best of the authors’ knowledge, this paper is an original work carried out by the authors on the hydrogen environment embrittlement of type 304 stainless steel. The effects of external hydrogen and argon were compared to provide understanding on the hydrogen-assisted crack initiation behaviors during cycle loading.
Details
Keywords
Haoping Peng, Zhaolin Luan, Jun Liu, Yun Lei, Junxiu Chen, Song Deng and Xuping Su
This paper aims to under the laboratory environment, the corrosion behavior of X80 pipeline steel in oilfield injection water in eastern China was studied by immersion test.
Abstract
Purpose
This paper aims to under the laboratory environment, the corrosion behavior of X80 pipeline steel in oilfield injection water in eastern China was studied by immersion test.
Design/methodology/approach
First, the corrosion product film was immersed in oilfield injection water and the effect on the corrosion behavior and the corrosion reaction mechanism were constantly observed during this period. The effect was displayed by potentiodynamic polarization curve and electrochemical impedance spectrums (EIS) measurements. Second, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction were used to observe and test the corrosion product film immersed in the oilfield water for 30 days.
Findings
The results indicate that the tendency of metal corrosion becomes weaker at an early stage, but strengthened later, which means the corrosion rate is accelerating. Besides, it is indicated by impedance spectroscopy that with the decreasing of the capacitance arc radius, the reaction resistance is reducing in this progress. Meanwhile, the character of Warburg impedance could be found in EIS, which means that the erosional components are more likely to penetrate the product film to reach the matrix. The corrosion product is mainly composed of the inner Fe3O4 layer and outer shell layer, which contains a large number of calcium carbonate granular deposits. It is this corrosion under fouling that produces severe localized corrosion, forming many etch pits on the metal substrate.
Originality/value
The experiment chose the X80 steel, the highest-grade pipeline steel used in China, to conduct the static immersion test in the injection water coming from an oilfield in eastern China. Accordingly, the corrosion mechanism and the effect of corrosion product film on the corrosion of pipeline steel were analyzed and discussed.
Details
Keywords
Jiaxin Li, Zhiyuan Zhu, Zhiwei Li, Yonggang Zhao, Yun Lei, Xuping Su, Changjun Wu and Haoping Peng
Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with…
Abstract
Purpose
Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with intensive research by scholars, the modification of coatings containing gallic acid has become a hot topic in the field of metal protection. This study aims to summarize the various preparation methods of gallic acid and its research progress in corrosion inhibitors and coatings, as well as related studies using quantum chemical methods to assess the predicted corrosion inhibition effects and to systematically describe the prospects and current status of gallic acid applications in the field of metal corrosion inhibition and protection.
Design/methodology/approach
First, the various methods of preparation of gallic acid in industry are understood. Second, the corrosion inhibition principles and research progress of gallic acid as a metal corrosion inhibitor are presented. Then, the corrosion inhibition principles and research progress of gallic acid involved in the synthesis and modification of various rust conversion coatings, nano-coatings and organic resin coatings are described. After that, studies related to the evaluation and prediction of gallic acid corrosion inhibition on metals by quantum chemical methods are presented. Finally, new research ideas on gallic acid in the field of corrosion inhibition and protection of metals are summarized.
Findings
Gallic acid can be used as a corrosion inhibitor or coating in metal protection.
Research limitations/implications
There is a lack of research on the synergistic improvement of gallic acid and other substances.
Practical implications
The specific application of gallic acid in the field of metal protection was summarized, and the future research focus was put forward.
Originality/value
To the best of the authors’ knowledge, this paper systematically expounds on the research progress of gallic acid in the field of metal protection for the first time and provides new ideas and directions for future research.
Details
Keywords
Zhiwei Li, Dingding Li, Yulong Zhou, Haoping Peng, Aijun Xie and Jianhua Wang
This paper aims to contribute to the performance improvement and the broader application of hot-dip galvanized coating.
Abstract
Purpose
This paper aims to contribute to the performance improvement and the broader application of hot-dip galvanized coating.
Design/methodology/approach
First, the ability to provide barrier protection, galvanic protection, and corrosion product protection provided by hot-dip galvanized coating is introduced. Then, according to the varying Fe content, the growth process of each sublayer within the hot-dip galvanized coating, as well as their respective microstructures and physical properties, is presented. Finally, the electrochemical corrosion behaviors of the different sublayers are analyzed.
Findings
The hot-dip galvanized coating is composed of η-Zn sublayer, ζ-FeZn13 sublayer, δ-FeZn10 sublayer, and Γ-Fe3Zn10 sublayer. Among these sublayers, with the increase in Fe content, the corrosion potential moves in a noble direction.
Research limitations/implications
There is a lack of research on the corrosion behavior of each sublayer of hot-dip galvanized coating in different electrolytes.
Practical implications
It provides theoretical guidance for the microstructure control and performance improvement of hot-dip galvanized coatings.
Originality/value
The formation mechanism, coating properties, and corrosion behavior of different sublayers in hot-dip galvanized coating are expounded, which offers novel insights and directions for future research.
Details
Keywords
Cong Liu, Yanguo Yin, Shibang Ma, Wei Liu, Guiquan Han, Haoping Wang and Chao He
This study aims to investigate the effect of steel fibers on the mechanical and tribological properties of FeS/Cu–Bi self-lubricating materials.
Abstract
Purpose
This study aims to investigate the effect of steel fibers on the mechanical and tribological properties of FeS/Cu–Bi self-lubricating materials.
Design/methodology/approach
The microstructure of the material was characterized by scanning electron microscopy. Tests on the crushing strength, impact toughness and tribological properties of materials were conducted using a universal electronic testing machine, a 300 J pendulum impact testing machine and an M200 ring-block sliding tribometer, respectively.
Findings
The mechanical properties of the material initially increased and then stabilized with increased copper-plated steel-fiber length. When the length of the copper-plated steel fiber was 7 mm, the mechanical properties of the material reached stability. Compared with the material without a copper-plated steel fiber, its crushing strength and impact toughness increased by 32.6% and 53%, respectively. A copper-plated steel fiber with a length of 7 mm lay flat in a copper matrix can strengthen the friction interface and enrich the lubricant. Accordingly, the antifriction and wear resistance of the materials increased by 17.6% and 55%, respectively.
Originality/value
The effects of copper-plated steel fibers on the properties of FeS/Cu–Bi self-lubricating materials were clarified. This work can serve as a reference for improving material performance and its engineering applications.
Details
Keywords
The purpose of this paper is to advance a model for identifying the superior customer value proposition that evolves through a process of corporate transformation while…
Abstract
Purpose
The purpose of this paper is to advance a model for identifying the superior customer value proposition that evolves through a process of corporate transformation while simultaneously seeking to align this value proposition with regional expansion and growth of Caribbean financial firms.
Design/methodology/approach
The study utilizes a cross-sectional design. Telephone surveys were used to collect data from 80 financial firms and 243 customers across ten Caribbean countries. Structural equations modeling was employed for data analysis.
Findings
The main findings are that corporate transformation of financial firms was a significant driver of customer orientation, consumer confidence, quality, flexibility, branding, and firm capability while lower prices (such as interest rates, fees, and charges), consumer confidence, and branding were the key drivers of regional expansion and growth.
Practical implications
The study identified six value-added dimensions along with price as the superior customer value proposition of financial firms. These dimensions should be incorporated in the business model for transformation and growth of these firms.
Originality/value
The study extended the literature through development of a customer value proposition model that was primarily built on Levitt’s (1965) product life cycle conceptualization and augmented by Porter’s generic strategies.