Search results

1 – 10 of over 1000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 10 November 2022

Xinxing Yin, Juan Chen, Wenxin Yu, Yuan Huang, Wenxiang Wei, Xinjie Xiang and Hao Yan

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural…

181

Abstract

Purpose

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural network (5D-HNN) to secure communication will greatly improve the confidentiality of signal transmission and greatly enhance the anticracking ability of the system.

Design/methodology/approach

Chaos masking: Chaos masking is the process of superimposing a message signal directly into a chaotic signal and masking the signal using the randomness of the chaotic output. Synchronous coupling: The coupled synchronization method first replicates the drive system to get the response system, and then adds the appropriate coupling term between the drive The synchronization error and the coupling term of the system will eventually converge to zero with time. The synchronization error and coupling term of the system will eventually converge to zero over time.

Findings

A 5D memristive neural network is obtained based on the original four-dimensional memristive neural network through the feedback control method. The system has five equations and contains infinite balance points. Compared with other systems, the 5D-HNN has rich dynamic behaviors, and the most unique feature is that it has multistable characteristics. First, its dissipation property, equilibrium point stability, bifurcation graph and Lyapunov exponent spectrum are analyzed to verify its chaotic state, and the system characteristics are more complex. Different dynamic characteristics can be obtained by adjusting the parameter k.

Originality/value

A new 5D memristive HNN is proposed and used in the secure communication

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Access Restricted. View access options
Article
Publication date: 17 January 2022

Heng Xiao, Wei-Hao Yan, Lin Zhan and Si-Yu Wang

A new and explicit form of the elastic strain-energy function for modeling large strain elastic responses of soft solids is constructed based on Hencky's logarithmic strain tensor.

110

Abstract

Purpose

A new and explicit form of the elastic strain-energy function for modeling large strain elastic responses of soft solids is constructed based on Hencky's logarithmic strain tensor.

Design/methodology/approach

Well-designed invariants of the Hencky strain are introduced for characterizing deformation modes and, furthermore, a new interpolating technique is proposed for combining piecewise splines into a single smooth function.

Findings

With this new form and this new technique, objectives in three respects may be achieved for the first time.

Originality/value

First, no adjustable parameters need to be treated. Second, large strain responses for three benchmark modes are derivable in a decoupled sense without involving strongly nonlinear coupling effects. Finally, large strain data may be automatically and accurately matched for three benchmark modes, including uniaxial, equi-biaxial and plane-strain extension. Numerical examples are presented and compared with usual approaches.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 10 January 2024

Tony Yan and Michael R. Hyman

The purpose of this paper is to provide a critical historical analysis of the business (mis)behaviors and influencing factors that discourage enduring cooperation between…

268

Abstract

Purpose

The purpose of this paper is to provide a critical historical analysis of the business (mis)behaviors and influencing factors that discourage enduring cooperation between principals and agents, to introduce strategies that embrace the social values, economic motivation and institutional designs historically adopted to curtail dishonest acts in international business and to inform an improved principal–agent theory that reflects principal–agent reciprocity as shaped by social, political, cultural, economic, strategic and ideological forces

Design/methodology/approach

The critical historical research method is used to analyze Chinese compradors and the foreign companies they served in pre-1949 China.

Findings

Business practitioners can extend orthodox principal–agent theory by scrutinizing the complex interactions between local agents and foreign companies. Instead of agents pursuing their economic interests exclusively, as posited by principal–agent theory, they also may pursue principal-shared interests (as suggested by stewardship theory) because of social norms and cultural values that can affect business-related choices and the social bonds built between principals and agents.

Research limitations/implications

The behaviors of compradors and foreign companies in pre-1949 China suggest international business practices for shaping social bonds between principals and agents and foreign principals’ creative efforts to enhance shared interests with local agents.

Practical implications

Understanding principal–agent theory’s limitations can help international management scholars and practitioners mitigate transaction partners’ dishonest acts.

Originality/value

A critical historical analysis of intermediary businesspeople’s (mis)behavior in pre-1949 (1840–1949) China can inform the generalizability of principal–agent theory and contemporary business strategies for minimizing agents’ dishonest acts.

Details

Journal of Management History, vol. 30 no. 4
Type: Research Article
ISSN: 1751-1348

Keywords

Access Restricted. View access options
Article
Publication date: 27 April 2020

Myranda Spratt, Sudharshan Anandan, Rafid Hussein, Joseph W. Newkirk, K. Chandrashekhara, Misak Heath and Michael Walker

The purpose of this study is to analyze the build quality and compression properties of thin-walled 304L honeycomb structures manufactured by selective laser melting. Four…

134

Abstract

Purpose

The purpose of this study is to analyze the build quality and compression properties of thin-walled 304L honeycomb structures manufactured by selective laser melting. Four honeycomb wall thicknesses, from 0.2 to 0.5 mm, were built and analyzed.

Design/methodology/approach

The density of the honeycombs was changed by increasing the wall thickness of each sample. The honeycombs were tested under compression. Differences between the computer-assisted design model and the as-built structure were quantified by measuring physical dimensions. The microstructure was evaluated by optical microscopy, density measurements and microhardness.

Findings

The Vickers hardness of the honeycomb structures was 209 ± 14 at 50 g load. The compression ultimate and yield strength of the honeycomb material were shown to increase as the wall thickness of the honeycomb samples increased. The specific ultimate strength also increased with wall thickness, while the specific yield stress of the honeycomb remained stable at 42 ± 2.7 MPa/g/cm3. The specific ultimate strength minimized near 0.45 mm wall thickness at 82 ± 5 MPa/g/cm3 and increased to 134 ± 3 MPa/g/cm3 at 0.6 mm wall thickness.

Originality/value

This study highlights a single lightweight metal structure, the honeycomb, built by additive manufacturing (AM). The honeycomb is an interesting structure because it is a well-known building material in the lightweight structural composites field but is still considered a relatively complex geometric shape to fabricate. As shown here, AM techniques can be used to make complex geometric shapes with strong materials to increase the design flexibility of the lightweight structural component industry.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 22 August 2017

Jianfeng Sun, Zhou Yang, Yongqiang Yang and Di Wang

This paper aims to analyze the different between matrix and overhanging structure and indicate the laws and mechanism of overhanging structure formed by selective laser melting…

393

Abstract

Purpose

This paper aims to analyze the different between matrix and overhanging structure and indicate the laws and mechanism of overhanging structure formed by selective laser melting (SLM).

Design/methodology/approach

This paper includes processing the matrix and overhanging structure with optimized parameters and analyzing the microstructure and properties of matrix and overhanging with OM, SEM, XRD etc. so as to analyze and reveal the laws and mechanism of overhanging structure formed by SLM.

Findings

The solidification of overhanging structure begins from the structure’s edge and extends to its center; the distribution of the Cr with a diameter of 250 nm in the Fe matrix is uniform; the grain in the overhanging structure is growing faster than the grain in the matrix. The overhanging structure mainly composed by austenite has no apparent layer. Moreover, the microhardness of the overhanging structure is 258.6-294.0 Hv0.3, smaller than the microhardness of the matrix which is 236.4-300.9 Hv0.3.

Originality/value

This paper clarifies how to manufacture overhanging structure and non-overhanging structure matrix with optimized parameters, analyzes the microstructures and compares the properties of both overhanging structure and non-overhanging structure “matrix”, so as to analyze the reasons for the forming of the overhanging structure, which in turn lauds basic data foundation for the theoretical studies in the future.

Details

Rapid Prototyping Journal, vol. 23 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 8 September 2021

Giampaolo Campana, Eckart Uhlmann, Mattia Mele, Luca Raffaelli, André Bergmann, Jaroslaw Kochan and Julian Polte

Support structures used in laser powder bed fusion are often difficult to clean from unsintered powder at the end of the process. This issue can be significantly reduced through a…

161

Abstract

Purpose

Support structures used in laser powder bed fusion are often difficult to clean from unsintered powder at the end of the process. This issue can be significantly reduced through a proper design of these auxiliary structures. This paper aims to investigate preliminary the airflow within differently oriented support structures and to provide design guidelines to enhance their cleanability, especially the depowdering of them.

Design/methodology/approach

This study investigates the cleanability of support structures in powder bed fusion technology. Digital models of cleaning operations were designed through computer-aided engineering systems. Simulations of the airflow running into the powder entrapped within the thin walls of auxiliary supports were implemented by computational fluid dynamics. This approach was applied to a set of randomly generated geometrical configurations to determine the air turbulence intensity depending on their design.

Findings

The results, which are based on the assumption that a relationship exists between turbulence and powder removal effectiveness, demonstrated that the maximum cleanability is obtainable through specific relative rotations between consecutive support structures. Furthermore, it was possible to highlight the considerable influence of the auxiliary structures next to the fluid inlet. These relevant findings establish optimal design rules for the cleanability of parts manufactured by powder bed fusion processes.

Originality/value

This study presents a preliminary investigation into the cleanability of support structures in laser powder bed fusion, which has not been addressed by previous literature. The results allow for a better understanding of the fluid dynamics during cleaning operations. New guidelines to enhance the cleanability of support structures are provided based on the results of simulations.

Details

Rapid Prototyping Journal, vol. 28 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 18 October 2021

Danna Tang, Yushen Wang, Zheng Li, Yan Li and Liang Hao

The low-temperature sintering of silica glass combined with additive manufacturing (AM) technology has brought a revolutionary change in glass manufacturing. This study aims to…

155

Abstract

Purpose

The low-temperature sintering of silica glass combined with additive manufacturing (AM) technology has brought a revolutionary change in glass manufacturing. This study aims to carry out in an attempt to achieve precious manufacturing of silicate glassy matrix through the method of slurry extrusion.

Design/methodology/approach

A low-cost slurry extrusion modelling technology is used to extrude silicate glassy matrix inks, composed of silicate glass powder with different amounts of additives. Extrudability of the inks, their printability window and the featuring curves of silicate glassy matrix are investigated. In addition, the properties of the low-temperature sintering green part as a functional part are explored and evaluated from morphology, hardness and colour.

Findings

The results showed that the particle size was mainly distributed from 1.4 µm to 5.3 µm, showing better slurry stability and print continuity. The parameters were set to 8 mm/s, 80% and 0.4 mm, respectively, to achieve better forming of three-dimensional (3D) samples. Besides, the organic binder removal step was concentrated on 200°C–300°C and 590°C–650°C was the fusion bonding temperature of the powder. The hardness values of 10 test samples ranged from 588 HL to 613 HL, which met the requirements of hard stones with super-strong mechanical strength. In addition, the mutual penetration of elements caused by temperature changes may lead to a colourful appearance.

Originality/value

The custom continuous AM technology enables the fabrication of a glass matrix with 3D structural features. The precise positioning technology of the glass matrix is expected to be applied more widely in functional parts.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 1 October 2018

Yunsong Shi, Wei Zhu, Chunze Yan, Jinsong Yang and Zhidao Xia

This study aims to report the preparation, selective laser sintering (SLS) processing and properties of a new nylon elastomer powder. The effects of solvent, dissolution…

347

Abstract

Purpose

This study aims to report the preparation, selective laser sintering (SLS) processing and properties of a new nylon elastomer powder. The effects of solvent, dissolution temperature and time and cooling method and speed on the particle size and morphologies of the prepared nylon elastomer powder are investigated.

Design/methodology/approach

The prepared nylon elastomer power possesses the particle size of around 50 mm and is spherical in shape, indicating that this study provides the feasible dissolution-precipitation process, a distillation cooling method and a suitable solvent to prepare nylon elastomer powders.

Findings

Compared to pure nylon 12, the nylon elastomer has a lower part bed temperature and a wider sintering window for the SLS process. The wider sintering window indicates the better SLS processibility. The lower part bed temperature is beneficial to the recycling of material and the decrease in the requirement of SLS equipment.

Originality/value

The nylon elastomer in this study has a lower part bed temperature and a wider sintering window for the SLS process. The wider sintering window indicates better SLS processibility. The lower part bed temperature is beneficial to the recycling of material and the decrease in the requirement of SLS equipment.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 4 April 2008

Shih‐Hao Shen, Yueh‐Min Huang and Jen‐Wen Ding

Wireless mesh networks (WMNs) are regarded as a milestone in developing next‐generation wireless networks. The multi‐hop architecture of WMN makes it very attractive. However…

243

Abstract

Purpose

Wireless mesh networks (WMNs) are regarded as a milestone in developing next‐generation wireless networks. The multi‐hop architecture of WMN makes it very attractive. However, interoperability is an inherent problem for deploying a large‐scale WMN, which may consist of various types of wireless networks. There are two intuitive approaches to solving the interoperability problem: the dual‐stack/multi‐stack approach and the naive layer‐2 broadcast approach. While the former incurs high cost in all devices, the latter creates broadcast storm in the whole network. This paper aims to propose a cross‐layer heterogeneous routing protocol for solving this problem without the adverse effects of the intuitive approaches.

Design/methodology/approach

A conceptual discussion and approach are employed.

Findings

The simulation results validate the efficiency of the proposed protocol.

Originality/value

The paper provides details of a method for routing selection in WMNs.

Details

International Journal of Pervasive Computing and Communications, vol. 4 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Access Restricted. View access options
Article
Publication date: 2 January 2018

Hamza Hassn Alsalla, Christopher Smith and Liang Hao

The purpose of this paper is to investigate the density, surface quality, microstructure and mechanical properties of the components of the selective laser melting (SLM) parts…

2252

Abstract

Purpose

The purpose of this paper is to investigate the density, surface quality, microstructure and mechanical properties of the components of the selective laser melting (SLM) parts made at different building orientations. SLM is an additive manufacturing technique for three-dimensional parts. The process parameters are known to affect the properties of the eventual part. In this study, process parameters were investigated in the building of 316L structures at a variety of building orientations and for which the fracture toughness was measured.

Design/methodology/approach

Hardness and tensile tests were carried out to evaluate the effect of consolidation on the mechanical performance of specimens. Optical and electron microscopy were used to characterise the microstructure of the SLM specimens and their effects on properties relating to fracture and the mechanics. It was found that the density of built samples is 96 per cent, and the hardness is similar in comparison to conventional material.

Findings

The highest fracture toughness value was found to be 176 MPa m^(1/2) in the oz. building direction, and the lowest value was 145 MPa m^(1/2) in the z building direction. This was due to pores and some cracks at the edge, which are slightly lower in comparison to a conventional product. The build direction does have an effect on the microstructure of parts, which subsequently has an effect upon their mechanical properties and surface quality. Dendritic grain structures were found in oz. samples due to the high temperature gradient, fast cooling rate and reduced porosity. The tensile properties of such parts were found to be better than those made from conventional material.

Originality/value

The relationship between the process parameters, microstructure, surface quality and toughness has not previously been reported.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000
Per page
102050