Yavar Safaei Mehrabani, Mojtaba Maleknejad, Danial Rostami and HamidReza Uoosefian
Full adder cells are building blocks of arithmetic circuits and affect the performance of the entire digital system. The purpose of this study is to provide a low-power and…
Abstract
Purpose
Full adder cells are building blocks of arithmetic circuits and affect the performance of the entire digital system. The purpose of this study is to provide a low-power and high-performance full adder cell.
Design/methodology/approach
Approximate computing is a novel paradigm that is used to design low-power and high-performance circuits. In this paper, a novel 1-bit approximate full adder cell is presented using the combination of complementary metal-oxide-semiconductor, transmission gate and pass transistor logic styles.
Findings
Simulation results confirm the superiority of the proposed design in terms of power consumption and power–delay product (PDP) criteria compared to state-of-the-art circuits. Also, the proposed full adder cell is applied in an 8-bit ripple carry adder to accomplish image processing applications including image blending, motion detection and edge detection. The results confirm that the proposed cell has premier compromise and outperforms its counterparts.
Originality/value
The proposed cell consists of only 11 transistors and decreases the switching activity remarkably. Therefore, it is a low-power and low-PDP cell.
Details
Keywords
Hamidreza Uoosefian, Keivan Navi, Reza Faghih Mirzaee and Mahdi Hosseinzadeh
The high demand for fast, energy-efficient, compact computational blocks in digital electronics has led the researchers to use approximate computing in applications where…
Abstract
Purpose
The high demand for fast, energy-efficient, compact computational blocks in digital electronics has led the researchers to use approximate computing in applications where inaccuracy of outputs is tolerable. The purpose of this paper is to present two ultra-high-speed current-mode approximate full adders (FA) by using carbon nanotube field-effect transistors.
Design/methodology/approach
Instead of using threshold detectors, which are common elements in current-mode logic, diodes are used to stabilize voltage. Zener diodes and ultra-low-power diodes are used within the first and second proposed designs, respectively. This innovation eliminates threshold detectors from critical path and makes it shorter. Then, the new adders are employed in the image processing application of Laplace filter, which detects edges in an image.
Findings
Simulation results demonstrate very high-speed operation for the first and second proposed designs, which are, respectively, 44.7 per cent and 21.6 per cent faster than the next high-speed adder cell. In addition, they make a reasonable compromise between power-delay product (PDP) and other important evaluating factors in the context of approximate computing. They have very few transistors and very low total error distance. In addition, they do not propagate error to higher bit positions by generating output carry correctly. According to the investigations, up to four inexact FA can be used in the Laplace filter computations without a significant image quality loss. The employment of the first and second proposed designs results in 42.4 per cent and 32.2 per cent PDP reduction compared to when no approximate FA are used in an 8-bit ripple adder.
Originality/value
Two new current-mode inexact FA are presented. They use diodes as voltage regulators to design current-mode approximate full-adders with very short critical path for the first time.