Haiyong Wu, Hui Huang and Xipeng Xu
The wear of an abrasive single-crystal diamond (SCD) grit affects the machining quality of the sapphire wafer. This paper aims to investigate the influence of crystallographic…
Abstract
Purpose
The wear of an abrasive single-crystal diamond (SCD) grit affects the machining quality of the sapphire wafer. This paper aims to investigate the influence of crystallographic orientation on the wear characteristics of SCD grit scratching on sapphire.
Design/methodology/approach
The wear characteristics of two SCD grits (SCD100 and SCD111) with different crystallographic orientations were systematically investigated. The wear mechanism involved in the scratching process was explored. The wear morphology, scratching forces and friction coefficient during the scratching process were measured and analyzed.
Findings
The experiment results show that the wear progress of the two SCD grits is obviously different. The wear resistance of SCD111 grit is greater than that of SCD100 grit in normal wear stage. However, the SCD100 grit could remove more sapphire material than SCD111 grit. The SCD grits mainly sustain extrusion stress and shear stress during scratching on sapphire. The crystallographic orientation of SCD grits plays a significant role in the wear progress during scratching on sapphire.
Originality/value
The results of the experimental studies could provide a theoretical foundation for improving the fabrication of abrasive diamond tools.
Details
Keywords
Haiyong Wu and Hui Huang
Mechanical wear is the main wear form of abrasive single crystal diamond (SCD) grit. The mechanical wear of SCD grit has a significant influence on the tool life and machining…
Abstract
Purpose
Mechanical wear is the main wear form of abrasive single crystal diamond (SCD) grit. The mechanical wear of SCD grit has a significant influence on the tool life and machining quality. This paper aims to investigate the influence of grit–workpiece contact form on the mechanical wear characteristics of SCD grit.
Design/methodology/approach
Three different grit–workpiece contact forms, which involved point/line/face contact forms, are investigated to reveal the wear mechanism of SCD grit scratching on Ta12W. The wear morphology, wear volume and scratching forces are measured, and the stress models of different contact forms are analyzed.
Findings
The results show that mechanical wear mainly occurs in the grit–workpiece contact area and increases gradually from contact area to entire SCD grit. The scratching forces vary with the mechanical wear progress of SCD grits. The SCD grit with point contact form is the most prone to produce wear. The SCD grit with face contact form can remove more material volume than the other two SCD grits, and it is the most wear resistant. The stress state is closely related with the mechanical wear of SCD grit. The contact form has a significant influence on the mechanical wear of SCD grit.
Originality/value
The results of this study can provide a theoretical basis for the fabrication of abrasive tools.