Search results

1 – 10 of 34
Article
Publication date: 2 May 2017

Qiang Xue and Duan Haibin

The purpose of this paper is to propose a new approach for aerodynamic parameter identification of hypersonic vehicles, which is based on Pigeon-inspired optimization (PIO…

Abstract

Purpose

The purpose of this paper is to propose a new approach for aerodynamic parameter identification of hypersonic vehicles, which is based on Pigeon-inspired optimization (PIO) algorithm, with the objective of overcoming the disadvantages of traditional methods based on gradient such as New Raphson method, especially in noisy environment.

Design/methodology/approach

The model of hypersonic vehicles and PIO algorithm is established for aerodynamic parameter identification. Using the idea, identification problem will be converted into the optimization problem.

Findings

A new swarm optimization method, PIO algorithm is applied in this identification process. Experimental results demonstrated the robustness and effectiveness of the proposed method: it can guarantee accurate identification results in noisy environment without fussy calculation of sensitivity.

Practical implications

The new method developed in this paper can be easily applied to solve complex optimization problems when some traditional method is failed, and can afford the accurate hypersonic parameter for control rate design of hypersonic vehicles.

Originality/value

In this paper, the authors converted this identification problem into the optimization problem using the new swarm optimization method – PIO. This new approach is proved to be reasonable through simulation.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2017

Shanjun Chen and Haibin Duan

The purpose of this paper is to propose an improved optimization method for image matching problem, which is based on multi-scale Gaussian mutation pigeon-inspired optimization…

Abstract

Purpose

The purpose of this paper is to propose an improved optimization method for image matching problem, which is based on multi-scale Gaussian mutation pigeon-inspired optimization (MGMPIO) algorithm, with the objective of accomplishing the complicated image matching quickly.

Design/methodology/approach

The hybrid model of multi-scale Gaussian mutation (MGM) mechanism and pigeon-inspired optimization (PIO) algorithm is established for image matching problem. The MGM mechanism is a nonlinear model, which can adjust the position of pigeons by mutation operation. In addition, the variable parameter (VP) mechanism is exploited to adjust the map and compass factor of the original PIO. Low-cost quadrotor, a type of electric multiple rotorcraft, is used as a carrier of binocular camera to obtain the images.

Findings

This work improved the PIO algorithm by modifying the search strategy and adding some limits, so that it can have better performance when applied to the image matching problem. Experimental results show that the proposed method demonstrates satisfying performance in convergence speed, robustness and stability.

Practical implications

The proposed MGMPIO algorithm can be easily applied to solve practical problems and accelerate convergence speed of the original PIO, and thus enhancing the speed of matching process, which will considerably increase the effectiveness of algorithm.

Originality/value

A hybrid model of the MGM mechanism and PIO algorithm is proposed for image matching problem. The VP mechanism and low-cost quadrotor is also utilized in image matching problem.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 October 2016

Yongbin Sun, Ning Xian and Haibin Duan

The purpose of this paper is to propose a new algorithm for linear-quadratic regulator (LQR) controller of a quadrotor with fast and stable performance, which is based on…

Abstract

Purpose

The purpose of this paper is to propose a new algorithm for linear-quadratic regulator (LQR) controller of a quadrotor with fast and stable performance, which is based on pigeon-inspired optimization (PIO).

Design/methodology/approach

The controller is based on LQR. The determinate parameters are optimized by PIO, which is a newly proposed swarm intelligent algorithm inspired by the characteristics of homing pigeons.

Findings

The PIO-optimized LQR controller can obtain the optimized parameters and achieve stabilization in about 3 s.

Practical implications

The PIO-optimized LQR controller can be easily applied to the flight formation, autonomous aerial refueling (AAR) and detection of unmanned aerial vehicles, especially applied to (AAR) in this paper.

Originality/value

This research applies PIO to optimize the tuning parameters of LQR, which can considerably improve the fast and stabilizing performance of attitude control. The simulation results show the effectiveness of the proposed algorithm.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2017

Daifeng Zhang, Haibin Duan and Yijun Yang

The purpose of this paper is to propose a control approach for small unmanned helicopters, and a novel swarm intelligence algorithm is used to optimize the parameters of the…

Abstract

Purpose

The purpose of this paper is to propose a control approach for small unmanned helicopters, and a novel swarm intelligence algorithm is used to optimize the parameters of the proposed controller.

Design/methodology/approach

Small unmanned helicopters have many advantages over other unmanned aerial vehicles. However, the manual operation process is difficult because the model is always instable and coupling. In this paper, a novel optimized active disturbance rejection control (ADRC) approach is presented for small unmanned helicopters. First, a linear attitude model is built in hovering condition according to small perturbation linearization. To realize decoupling, this model is divided into two parts, and each part is equipped with an ADRC controller. Finally, a novel Levy flight-based pigeon-inspired optimization (LFPIO) algorithm is developed to find the optimal ADRC parameters and enhance the performance of controller.

Findings

This paper applies ADRC method to the attitude control of small unmanned helicopters so that it can be implemented in practical flight under complex environments. Besides, a novel LFPIO algorithm is proposed to optimize the parameters of ADRC and is proved to be more efficient than other homogenous methods.

Research limitations/implications

The model of proposed controller is built in the hovering action, whereas it cannot be used in other flight modes.

Practical implications

The optimized ADRC method can be implemented in actual flight, and the proposed LFPIO algorithm can be developed in other practical optimization problems.

Originality/value

ADRC method can enhance the response and robustness of unmanned helicopters which make it valuable in actual environments. The proposed LFPIO algorithm is proved to be an effective swarm intelligence optimizer, and it is convenient and valuable to apply it in other optimized systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 March 2017

Soyinka Olukunle Kolawole and Duan Haibin

Keeping satellite position within close tolerances is key for the utilization of satellite formations for space missions. The presence of perturbation forces makes control…

Abstract

Purpose

Keeping satellite position within close tolerances is key for the utilization of satellite formations for space missions. The presence of perturbation forces makes control inevitable if such mission objective is to be realised. Various approaches have been used to obtain feedback controller parameters for satellites in a formation; this paper aims to approach the problem of estimating the optimal feedback parameter for a leader–follower pair of satellites in a small eccentric orbit using nature-based search algorithms.

Design/methodology/approach

The chaotic artificial bee colony algorithm is a variant of the basic artificial bee colony algorithm. The algorithm mimics the behaviour of bees in their search for food sources. This paper uses the algorithm in optimizing feedback controller parameters for a satellite formation control problem. The problem is formulated to optimize the controller parameters while minimizing a fuel- and state-dependent cost function. The dynamical model of the satellite is based on Gauss variational equations with J2 perturbation. Detailed implementation of the procedure is provided, and experimental results of using the algorithm are also presented to show feasibility of the method.

Findings

The experimental results indicate the feasibility of this approach, clearly showing the effective control of the transients that arise because of J2 perturbation.

Originality/value

This paper applied a swarm intelligence approach to the problem of estimating optimal feedback control parameter for a pair of satellites in a formation.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Jiaqi Jia and Haibin Duan

The purpose of this paper is to propose a novel target automatic recognition method for unmanned aerial vehicle (UAV), which is based on backpropagation – artificial neural…

Abstract

Purpose

The purpose of this paper is to propose a novel target automatic recognition method for unmanned aerial vehicle (UAV), which is based on backpropagation – artificial neural network (BP-ANN) algorithm, with the objective of optimizing the structure of backpropagation network, to increase the efficiency and decrease the recognition time. A hardware-in-the-loop system for UAV target automatic recognition is also developed.

Design/methodology/approach

The hybrid model of BP-ANN structure is established for aircraft automatic target recognition. This proposed method identifies controller parameters and reduces the computational complexity. Approaching speed of the network is faster and recognition accuracy is higher. This kind of network combines or better fuses the advantages of backpropagation artificial neural algorithm and Hu moment. with advantages of two networks and improves the speed and accuracy of identification. Finally, a hardware-in-the-loop system for UAV target automatic recognition is also developed.

Findings

The double hidden level backpropagation artificial neural can easily increase the speed of recognition process and get a good performance for recognition accuracy.

Research limitations/implications

The proposed backpropagation artificial neural algorithm can be ANN easily applied to practice and can help the design of the aircraft automatic target recognition system. The standard backpropagation algorithm has some obvious drawbacks, namely, converging slowly and falling into the local minimum point easily. In this paper, an improved algorithm based on the standard backpropagation algorithm is constructed to make the aircraft target recognition more practicable.

Originality/value

A double hidden levels backpropagation artificial neural algorithm is presented for automatic target recognition system of UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 December 2022

Zhiqiang Zheng, Haibin Duan and Yimin Deng

The purpose of this paper is to propose a novel maximum power point track (MPPT) controller for a type of solar quad-copter to solve the problem of tracking the maximum power…

Abstract

Purpose

The purpose of this paper is to propose a novel maximum power point track (MPPT) controller for a type of solar quad-copter to solve the problem of tracking the maximum power point (MPP) when it works in nonuniform environment conditions.

Design/methodology/approach

The influence of uniform and nonuniform illumination and different temperatures results in the output characteristics of the solar array arising multiple local MPPs. To track the global MPP of the solar array on the designed solar quadcopter, a type of MPPT controller based on an improved pigeon-inspired optimization (PIO) algorithm is proposed.

Findings

A novel type of MPPT controller based on extended search PIO (ESPIO) algorithm, called ESPIO–MPPT controller, is introduced emphatically, which is used to extend the solar quadcopter’s flight time. The simulation experiments show that the ESPIO–MPPT controller can find the global MPP (GMPP) with smaller amplitudes of oscillation and less time cost.

Practical implications

The proposed solar quadcopter with ESPIO–MPPT controller has satisfactory flight performance which can greatly broaden its mission scope.

Originality/value

A type of efficient MPPT algorithm based on ESPIO is proposed for GMPP tracking of solar quadcopters in nonuniform environment conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 October 2021

Yang Yuan and Haibin Duan

The purpose of this paper is to develop a novel active disturbance rejection attitude controller for quadrotors and propose a controller parameters identification approach to…

Abstract

Purpose

The purpose of this paper is to develop a novel active disturbance rejection attitude controller for quadrotors and propose a controller parameters identification approach to obtain better control results.

Design/methodology/approach

Aiming at the problem that quadrotor is susceptible to disturbance in outdoor flight, the improved active disturbance rejection control (IADRC) is applied to design attitude controller. To overcome the difficulty that adjusting the parameters of IADRC controller manually is complex, paired coevolution pigeon-inspired optimization (PCPIO) algorithm is used to optimize the control parameters.

Findings

The IADRC, where nonlinear state error feedback control law is replaced by non-singular fast terminal sliding mode control law and a third-order tracking differentiator is designed for second derivative of the state, has higher control accuracy and better robustness than ADRC. The improved PIO algorithm based on evolutionary mechanism, named PCPIO, is proposed. The optimal parameters of ADRC controller are found by PCPIO with the optimization criterion of integral of time-weighted absolute value of the error. The effectiveness of the proposed method is verified by a series of simulation experiments.

Practical implications

IADRC can improve the accuracy of attitude control of quadrotor and resist external interference more effectively. The proposed PCPIO algorithm can be easily applied to practice and can help the design of the quadrotor control system.

Originality/value

An improved active disturbance rejection controller is designed for quadrotor attitude control, and a hybrid model of PIO and evolution mechanism is proposed for parameters identification of the controller.

Article
Publication date: 26 August 2024

Hong Long and Haibin Duan

The purpose of this paper is to present and implement a task allocation method based on game theory for reconnaissance mission planning of UAVs and USVs system.

Abstract

Purpose

The purpose of this paper is to present and implement a task allocation method based on game theory for reconnaissance mission planning of UAVs and USVs system.

Design/methodology/approach

In this paper, the decision-making framework via game theory of mission planning is constructed. The mission planning of UAVs–USVs is transformed into a potential game optimization problem by introducing a minimum weight vertex cover model. The modified population-based game-theoretic optimizer (MPGTO) is used to improve the efficiency of solving this complex multi-constraint assignment problem.

Findings

Several simulations are carried out to exhibit that the proposed algorithm obtains the superiority on quality and efficiency of mission planning solutions to some existing approaches.

Research limitations/implications

Several simulations are carried out to exhibit that the proposed algorithm obtains the superiority on quality and efficiency of mission planning solutions to some existing approaches.

Practical implications

The proposed framework and algorithm are expected to be applied to complex real scenarios with uncertain targets and heterogeneity.

Originality/value

The decision framework via game theory is proposed for the mission planning problem of UAVs–USVs and a MPGTO with swarm evolution, and the adaptive iteration mechanism is presented for ensuring the efficiency and quality of the solution.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 September 2024

Dukun Xu, Yimin Deng and Haibin Duan

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle…

Abstract

Purpose

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle search (BES) algorithm has been improved, and a cost function has been designed to enhance the optimization efficiency of ADRC parameters.

Design/methodology/approach

A six-degree-of-freedom nonlinear model for a fixed-wing UAV has been developed, and its attitude controller has been formulated using the active disturbance rejection control method. The parameters of the disturbance rejection controller have been fine-tuned using the collaborative mutual promotion bald eagle search (CMP-BES) algorithm. The pitch and roll controllers for the UAV have been individually optimized to obtain the most effective controller parameters.

Findings

Inspired by the salp swarm algorithm (SSA), the interaction among individual eagles has been incorporated into the CMP-BES algorithm, thereby enhancing the algorithm's exploration capability. The efficient and accurate optimization ability of the proposed algorithm has been demonstrated through comparative experiments with genetic algorithm, particle swarm optimization, Harris hawks optimization HHO, BES and modified bald eagle search algorithms. The algorithm's capability to solve complex optimization problems has been further proven by testing on the CEC2017 test function suite. A transitional function for fitness calculation has been introduced to accelerate the ability of the algorithm to find the optimal parameters for the ADRC controller. The tuned ADRC controller has been compared with the classical proportional-integral-derivative (PID) controller, with gust disturbances introduced to the UAV body axis. The results have shown that the tuned ADRC controller has faster response times and stronger disturbance rejection capabilities than the PID controller.

Practical implications

The proposed CMP-BES algorithm, combined with a fitness function composed of transition functions, can be used to optimize the ADRC controller parameters for fixed-wing UAVs more quickly and effectively. The tuned ADRC controller has exhibited excellent robustness and disturbance rejection capabilities.

Originality/value

The CMP-BES algorithm and transitional function have been proposed for the parameter optimization of the active disturbance rejection controller for fixed-wing UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 34