Haixu Yang, Feng Zhu, Haibiao Wang, Liang Yu and Ming Shi
The purpose of this paper is to describe the structure of nonlinear dampers and the dynamic equations, and nonlinear realization principles and optimize the parameters of…
Abstract
Purpose
The purpose of this paper is to describe the structure of nonlinear dampers and the dynamic equations, and nonlinear realization principles and optimize the parameters of nonlinear dampers. Using the finite element method to analyze the seismic performance of the frame structure with shock absorber.
Design/methodology/approach
The nonlinear shock absorber was installed in a six-storey reinforced concrete frame structure to study its seismic performance. The main structure was designed according to the eight degree seismic fortification intensity, and the time history dynamic analysis was carried out by Abaqus finite element software. EL-Centro, Taft and Wenchuan seismic record were selected to analyze the seismic response of the structure under different magnitudes and different acceleration peaks.
Findings
Through the principle study and parameter analysis of the nonlinear shock absorber, combined with the finite element simulation results, the shock absorption performance and shock absorption effect of the nonlinear energy sink (NES) nonlinear shock absorber are given as follows: first, the damping of the NES shock absorber is satisfied, and the linear spring stiffness and nonlinear stiffness of the shock absorber are based on the relationship k1=kn×kl2, so that the spring design length is fixed, and the linear stiffness of the shock absorber can be obtained. The nonlinear shock absorber has the characteristics of high rigidity and frequency bandwidth, so that the frequency is infinitely close to the frequency of the main structure, and when the mass of the shock absorber satisfies between 0.056 and 1, a good shock absorption effect can be obtained, and the reinforced concrete with the shock absorber is obtained. The frame structure can effectively reduce the seismic response, increase the natural vibration period of the structure and reduce the damage loss of the structure. Second, the spacer and each additional shock absorber have a small difference in shock absorption effect. After the shock absorber parameters are accurately calculated, the number of installations does not affect the shock absorption effect of the structure. Therefore, the shock absorber is properly constructed and accurately calculated. Parameters can reduce costs.
Originality/value
New shock absorbers reduce earthquake-induced damage to buildings.
Details
Keywords
Yongshuai Wang, Md. Abdullah Al Mahbub and Haibiao Zheng
This paper aims to propose a characteristic stabilized finite element method for non-stationary conduction-convection problems.
Abstract
Purpose
This paper aims to propose a characteristic stabilized finite element method for non-stationary conduction-convection problems.
Design/methodology/approach
To avoid difficulty caused by the trilinear term, the authors use the characteristic method to deal with the time derivative term and the advection term. The space discretization adopts the low-order triples (i.e. P1-P1-P1 and P1-P0-P1 triples). As low-order triples do not satisfy inf-sup condition, the authors use the stability technique to overcome this flaw.
Findings
The stability and the convergence analysis shows that the method is stable and has optimal-order error estimates.
Originality/value
Numerical experiments confirm the theoretical analysis and illustrate that the authors’ method is highly effective and reliable, and consumes less CPU time.
Details
Keywords
Changyang Li, Huapeng Wu, Harri Eskelinen and Haibiao Ji
This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in…
Abstract
Purpose
This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in fusion reactor. Detailed mechanical design of the robot is presented and both the kinematic and dynamic behaviors are studied.
Design/methodology/approach
First, the model of the mobile parallel robot was created in computer-aided design (CAD) software, then the simulation and optimization of the robot were completed to meet the design requirements. Then the robot was manufactured and assembled. Finally, the machining and tungsten inert gas (TIG) welding tests were performed for validation.
Findings
Currently, the implementation of the robot system has been successfully carried out in the laboratory. The excellent performance has indicated that the robot’s mechanical and software designs are suitable for the given tasks. The quality and accuracy of welding and machining has reached the requirements.
Originality/value
This mobile parallel industrial robot is particularly used in fusion reactor. Furthermore, the structure of the mobile parallel robot can be optimized for different applications.