Search results
1 – 4 of 4Hadi Shabanpour, Saeed Yousefi and Reza Farzipoor Saen
The objective of this research is to put forward a novel closed-loop circular economy (CE) approach to forecast the sustainability of supply chains (SCs). We provide a practical…
Abstract
Purpose
The objective of this research is to put forward a novel closed-loop circular economy (CE) approach to forecast the sustainability of supply chains (SCs). We provide a practical and real-world CE framework to improve and fill the current knowledge gap in evaluating sustainability of SCs. Besides, we aim to propose a real-life managerial forecasting approach to alert the decision-makers on the future unsustainability of SCs.
Design/methodology/approach
It is needed to develop an integrated mathematical model to deal with the complexity of sustainability and CE criteria. To address this necessity, for the first time, network data envelopment analysis (NDEA) is incorporated into the dynamic data envelopment analysis (DEA) and artificial neural network (ANN). In general, methodologically, the paper uses a novel hybrid decision-making approach based on a combination of dynamic and network DEA and ANN models to evaluate sustainability of supply chains using environmental, social, and economic criteria based on real life data and experiences of knowledge-based companies so that the study has a good adaptation with the scope of the journal.
Findings
A practical CE evaluation framework is proposed by incorporating recyclable undesirable outputs into the models and developing a new hybrid “dynamic NDEA” and “ANN” model. Using ANN, the sustainability trend of supply chains for future periods is forecasted, and the benchmarks are proposed. We deal with the undesirable recycling outputs, inputs, desirable outputs and carry-overs simultaneously.
Originality/value
We propose a novel hybrid dynamic NDEA and ANN approach for forecasting the sustainability of SCs. To do so, for the first time, we incorporate a practical CE concept into the NDEA. Applying the hybrid framework provides us a new ranking approach based on the sustainability trend of SCs, so that we can forecast unsustainable supply chains and recommend preventive solutions (benchmarks) to avoid future losses. A practicable case study is given to demonstrate the real-life applications of the proposed method.
Details
Keywords
Vahid Shokri Kahi, Saeed Yousefi, Hadi Shabanpour and Reza Farzipoor Saen
The purpose of this paper is to develop a novel network and dynamic data envelopment analysis (DEA) model for evaluating sustainability of supply chains. In the proposed model…
Abstract
Purpose
The purpose of this paper is to develop a novel network and dynamic data envelopment analysis (DEA) model for evaluating sustainability of supply chains. In the proposed model, all links can be considered in calculation of efficiency score.
Design/methodology/approach
A dynamic DEA model to evaluate sustainable supply chains in which networks have series structure is proposed. Nature of free links is defined and subsequently applied in calculating relative efficiency of supply chains. An additive network DEA model is developed to evaluate sustainability of supply chains in several periods. A case study demonstrates applicability of proposed approach.
Findings
This paper assists managers to identify inefficient supply chains and take proper remedial actions for performance optimization. Besides, overall efficiency scores of supply chains have less fluctuation. By utilizing the proposed model and determining dual-role factors, managers can plan their supply chains properly and more accurately.
Research limitations/implications
In real world, managers face with big data. Therefore, we need to develop an approach to deal with big data.
Practical implications
The proposed model offers useful managerial implications along with means for managers to monitor and measure efficiency of their production processes. The proposed model can be applied in real world problems in which decision makers are faced with multi-stage processes such as supply chains, production systems, etc.
Originality/value
For the first time, the authors present additive model of network-dynamic DEA. For the first time, the authors outline the links in a way that carry-overs of networks are connected in different periods and not in different stages.
Details
Keywords
Mohammad Khalilzadeh and Hadis Derikvand
Globalization of markets and pace of technological change have caused the growing importance of paying attention to supplier selection problem. Therefore, this study aims to…
Abstract
Purpose
Globalization of markets and pace of technological change have caused the growing importance of paying attention to supplier selection problem. Therefore, this study aims to choose the best suppliers by providing a mathematical model for the supplier selection problem considering the green factors and stochastic parameters. This paper aims to propose a multi-objective model to identify optimal suppliers for a green supply chain network under uncertainty.
Design/methodology/approach
The objective of this model is to select suppliers considering total cost, total quality parts and total greenhouse gas emissions. Also, uncertainty is tackled by stochastic programming, and the multi-objective model is solved as a single-objective model by the LP-metric method.
Findings
Twelve numerical examples are provided, and a sensitivity analysis is conducted to demonstrate the effectiveness of the developed mathematical model. Results indicate that with increasing market numbers and final product numbers, the total objective function value and run time increase. In case that decision-makers are willing to deal with uncertainty with higher reliability, they should consider whole environmental conditions as input parameters. Therefore, when the number of scenarios increases, the total objective function value increases. Besides, the trade-off between cost function and other objective functions is studied. Also, the benefit of the stochastic programming approach is proved. To show the applicability of the proposed model, different modes are defined and compared with the proposed model, and the results demonstrate that the increasing use of recyclable parts and application of the recycling strategy yield more economic savings and less costs.
Originality/value
This paper aims to present a more comprehensive model based on real-world conditions for the supplier selection problem in green supply chain under uncertainty. In addition to economic issue, environmental issue is considered from different aspects such as selecting the environment-friendly suppliers, purchasing from them and taking the probability of defective finished products and goods from suppliers into account.
Details
Keywords
Himanshu Seth, Deepak Kumar Tripathi, Saurabh Chadha and Ankita Tripathi
This study aims to present an innovative predictive methodology that transitions from traditional efficiency assessment techniques to a forward-looking strategy for evaluating…
Abstract
Purpose
This study aims to present an innovative predictive methodology that transitions from traditional efficiency assessment techniques to a forward-looking strategy for evaluating working capital management(WCM) and its determinants by integrating data envelopment analysis (DEA) with artificial neural networks (ANN).
Design/methodology/approach
A slack-based measure (SBM) within DEA was used to evaluate the WCME of 1,388 firms in the Indian manufacturing sector across nine industries over the period from April 2009 to March 2024. Subsequently, a fixed-effects model was used to determine the relationships between selected determinants and WCME. Moreover, the multi-layer perceptron method was applied to calculate the artificial neural network (ANN). Finally, sensitivity analysis was conducted to determine the relative significance of key predictors on WCME.
Findings
Manufacturing firms consistently operate at around 50% WCME throughout the study period. Furthermore, among the selected variables, ability to create internal resources, leverage, growth, total fixed assets and productivity are relatively significant vital predictors influencing WCME.
Originality/value
The integration of SBM-DEA and ANN represents the primary contribution of this research, introducing a novel approach to efficiency assessment. Unlike traditional models, the SBM-DEA model offers unit invariance and monotonicity for slacks, allowing it to handle zero and negative data, which overcomes the limitations of previous DEA models. This innovation leads to more accurate efficiency scores, enabling robust analysis. Furthermore, applying neural networks provides predictive insights by identifying critical predictors for WCME, equipping firms to address WCM challenges proactively.
Details