Hybrid journal bearing have long been used in machines requiring large load and high speed capacity operating under wide range of temperatures. Different compensating devices are…
Abstract
Purpose
Hybrid journal bearing have long been used in machines requiring large load and high speed capacity operating under wide range of temperatures. Different compensating devices are used in for efficient operation of bearings. This paper aims to help in selection of optimum compensating device by evaluating the comparative performance of constant flow valve, capillary compensated and slot entry hybrid journal bearing under the combined influence of thermal effects and micropolar nature of lubricant.
Design/methodology/approach
The variation in micropolar parameters and viscosity change due to temperature increase of lubricant are considered in present study. Finite element method is used for combined iterative solution of micropolar Reynolds, energy and conduction equations. Micropolar lubricant is assumed to be governed by two parameters, coupling number and characteristic length. The results in the study are presented for symmetric and asymmetric configurations of hole entry and slot entry non-recessed hybrid journal bearings
Findings
The results indicate that constant flow valve compensated hole entry hybrid journal bearing is the highest performing bearing for the given range of micropolar parameters of lubricant in terms of maximum fluid pressure and dynamic coefficients.
Originality/value
The performance variations of various configurations of hybrid journal bearing are presented in a single paper. The reader can get overview of combined effects of micropolar parameters and viscosity decrease due to temperature increase of the lubricant.
Details
Keywords
The purpose of this paper is to present theoretical investigations of the static performance characteristics of orifice compensated symmetric hole‐entry hybrid journal bearing…
Abstract
Purpose
The purpose of this paper is to present theoretical investigations of the static performance characteristics of orifice compensated symmetric hole‐entry hybrid journal bearing considering the combined influence of rise in temperature and non‐Newtonian behavior of the lubricant.
Design/methodology/approach
The thermohydrostatic (THS) rheological solution of a hole‐entry hybrid journal bearing system requires the simultaneous solution of Reynolds equation, energy equation and conduction equation along with appropriate boundary conditions. In the present study an iterative numerical solution scheme is used to establish pressure and temperature fields in the lubricant fluid‐film.
Findings
It is found that there is an increase in the oil requirement for a hybrid journal bearing with the specified operating and geometric parameters, when the viscosity of the lubricant decreases due to the rise in temperature and non‐Newtonian behavior of the lubricant.
Originality/value
The available literature concerning the orifice compensated symmetric hybrid/hydrodynamic journal bearings indicates that the thermal effects together with non‐Newtonian behavior of lubricant due to additives mixed in the lubricants have been ignored in the analysis so as to obviate the mathematical complexity.
Details
Keywords
H.C. Garg and Vijay Kumar
The changing technological scenario necessitated hybrid journal bearings to operate under severe conditions of heavy load and high speed resulting into temperature rise of the…
Abstract
Purpose
The changing technological scenario necessitated hybrid journal bearings to operate under severe conditions of heavy load and high speed resulting into temperature rise of the lubricant fluid-film and bearing surface. To predict the performance of a bearing realistically, theoretical model must consider the combined influence of the rise of temperature and non-Newtonian behavior of the lubricant. The aim of the present paper is to study the effect of viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on performance of constant flow valve compensated multiple hole-entry hybrid journal bearings.
Design/methodology/approach
Finite element method has been used to solve Reynolds equation along with restrictor flow equation, 3D energy equation and 3D conduction equation using suitable iterative technique. The non-Newtonian lubricant has been assumed to follow cubic shear stress law.
Findings
The thermohydrostatic rheological performances of symmetric and asymmetric hole-entry hybrid journal bearing configurations are studied. The computed results illustrate that variation of viscosity due to rise in temperature and non-Newtonian behavior of the lubricant affects the performance of hole-entry hybrid journal bearing system quite significantly.
Originality/value
In the present work, the influences of the viscosity variation due to temperature rise and non-Newtonian behavior of the lubricant on the performance characteristics of non-recessed hole-entry hybrid journal bearing with symmetric and asymmetric configurations compensated with constant flow valve restrictors have been investigated for generating the design data to be used by bearing designer. The design data computed in the present thesis are a contribution in field of knowledge of bearing design.
Details
Keywords
This paper aims to describe the theoretical study concerning the effect of non‐linear behavior of the lubricant on the performance of symmetric constant flow valve compensated…
Abstract
Purpose
This paper aims to describe the theoretical study concerning the effect of non‐linear behavior of the lubricant on the performance of symmetric constant flow valve compensated hole‐entry hybrid journal bearing. The bearing performance characteristics have been computed for various values of non‐linearity factor, land width ratio, aspect ratio and external load.
Design/methodology/approach
The analysis considers the generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor. The non‐Newtonian lubricant is assumed to follow the cubic shear stress law.
Findings
The study indicates that for generation of accurate bearing characteristics data, the inclusion of non‐linear effects of lubricant in the analysis is essential.
Originality/value
The performance characteristics in terms of minimum fluid‐film thickness, fluid‐film stiffness and damping coefficients, critical mass and threshold speed for a wide range of values of the non‐linearity factor and external load are presented. The results presented are expected to be quite useful to bearing designers.
Details
Keywords
H.C. Garg and Vijay Kumar
The purpose of this paper is to describe the static performance characteristics of orifice compensated hole-entry hybrid journal bearing considering the combined influence of rise…
Abstract
Purpose
The purpose of this paper is to describe the static performance characteristics of orifice compensated hole-entry hybrid journal bearing considering the combined influence of rise in temperature and non-Newtonian behavior of the lubricant. The required governing equations have been solved using the finite element method and a suitable iterative technique. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The thermohydrostatic (THS) rheological performance of asymmetric hole-entry hybrid journal bearing configurations are studied. The computed results indicate that variation of viscosity due rise in temperature and non-Newtonian behavior of the lubricant affects the performance of asymmetric hole-entry hybrid journal bearing system quite significantly.
Design/methodology/approach
The THS rheological solution of a hole-entry hybrid journal bearing system requires the simultaneous solution of Reynolds equation, 3D energy equation and 3D conduction equation along with appropriate boundary conditions. In present study an iterative numerical solution scheme is used to establish pressure and temperature fields in the lubricant fluid-film.
Findings
The computed results indicate that variation of viscosity due rise in temperature and non-Newtonian behavior of the lubricant affects the performance of asymmetric hole-entry hybrid journal bearing system quite significantly.
Originality/value
The available literature concerning the orifice compensated asymmetric hole-entry hybrid journal bearings indicates that the thermal effects together with non-Newtonian behavior of lubricant due to additives mixed in the lubricants have been ignored in the analysis so as to obviate the mathematical complexity. The bearing performance characteristics have been presented considering the combined influence of rise in temperature and non-Newtonian behavior of the lubricant for asymmetric bearing configurations.
Details
Keywords
This paper aims to develop vegetable oil-based environmentally acceptable lubricants with a halogen-free ionic liquid (IL) as a substitute for petroleum-based lubricants.
Abstract
Purpose
This paper aims to develop vegetable oil-based environmentally acceptable lubricants with a halogen-free ionic liquid (IL) as a substitute for petroleum-based lubricants.
Design/methodology/approach
The rheological and tribological characteristics of canola oil influenced by 1-ethyl-3-methylimidazolium dicyanamide as an additive along with surfactants have been experimentally investigated. The viscosities of prepared bio-ionic lubricants have been evaluated at a constant shear rate of 100 per second with a temperature ramp from 30°C to 100°C and also by varying shear rate from 1 to 103 per second at constant temperatures of 40°C and 100°C. The solubilization and absorbance of bio-ionic lubricants have been studied by using dynamic light scattering and ultraviolet–visible spectroscopy. Friction and wear effects of bio-ionic lubricants have been evaluated using ball-on-disc tribotester at different speeds and loads.
Findings
The rheological properties of canola oil have been significantly improved with addition of IL. Minimum coefficient of friction and wear have been observed at an optimum concentration of 2 Wt.% of IL. Atomic force microscopy reveals that worn-out surface of ball lubricated with canola oil containing 2 Wt.% IL has smooth surface.
Originality/value
This study demonstrates that halogen-free has the potential to accommodate as an incipient class of EALs.
Details
Keywords
Hem Chander Garg and Vijay Kumar
The slot-entry hybrid journal bearings have been successfully used in various engineering applications because of their good performance over wide range of speed and load, besides…
Abstract
Purpose
The slot-entry hybrid journal bearings have been successfully used in various engineering applications because of their good performance over wide range of speed and load, besides their relative simplicity in manufacturing. Most of the research work pertaining to non-recessed journal bearing assumes standard symmetric and asymmetric configurations. However, many more configurations are possible by changing the position of slot which may improve the performance of the slot-entry journal bearing. In the present work study of static performance characteristics of slot-entry journal bearing of different configuration has been carried out. The paper aims to discuss these issues.
Design/methodology/approach
FEM has been used to solve the Reynolds equation governing the flow of lubricant in the bearing clearance space along with the restrictor flow equation. The non-Newtonian lubricant has been assumed to follow the cubic shear stress law. The performance characteristics of slot-entry hybrid journal bearings are computed by developing a computer program.
Findings
The simulated results of bearing characteristics parameters in terms of minimum fluid-film thickness and bearing flow have been presented for the wide range of various values of non-linearity factor and external load. It is found that there is an increase in the oil requirement for slot-entry hybrid journal bearing with the specified operating and geometric parameters, when the viscosity of the lubricant decreases due to the non-Newtonian behavior of the lubricant. The effect of the decrease in the viscosity of the lubricant due to non-Newtonian behavior of the lubricant diminishes the attitude angle. The computed performance characteristics are helpful for the bearing designer while choosing a particular configuration of bearing.
Research limitations/implications
The performance characteristics have been computed by considering the non-Newtonian lubricants. The thermal effects have been ignored in the analysis so as to obviate the mathematical complexity.
Originality/value
Get idea from already published manuscripts.
Details
Keywords
H.C. Garg and Vijay Kumar
This paper aims to investigate the effect of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing…
Abstract
Purpose
This paper aims to investigate the effect of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing system operating with Newtonian and non‐Newtonian lubricants. The analysis considers the generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor. The non‐Newtonian lubricant is assumed to follow the power law. The performance characteristics are computed for the two values of power law index (n=1.0 and 0.566). The computed results indicate that the blockage of holes during operation will not be the likely causes for the imminent failure of a well‐designed non‐recessed hole‐entry hybrid journal bearing.
Design/methodology/approach
Finite element method has been used to solve generalized Reynolds equation governing the flow of lubricant having variable viscosity in the clearance space and equation of flow of lubricant through constant flow valve restrictor.
Findings
The computed results indicate that the blockage of holes during operation will not be the likely causes for the imminent failure of a well‐designed non‐recessed hole‐entry hybrid journal bearing. The bearing configuration with plugged holes provides sufficient fluid film thickness and low power requirement as less lubricant is required to be pumped in the bearing.
Originality/value
To the best of the author's knowledge, no study which considers the influence of plugging of holes on the static performance characteristics of a constant flow valve compensated hole‐entry hybrid journal bearing system operating with Newtonian and non‐Newtonian lubricant is yet available in the literature.
Details
Keywords
H.C. Garg, Vijay Kumar and H.B. Sharda
Every high speed machine, demanding high level of perfection, can operate successfully through a precise design of bearings. Such a design can be formulated after carefully…
Abstract
Purpose
Every high speed machine, demanding high level of perfection, can operate successfully through a precise design of bearings. Such a design can be formulated after carefully studying both static and dynamic characteristics of the journal bearing. The present paper aims to describe the study of static and dynamic performance of a hole‐entry hybrid journal bearing system compensated with capillary restrictor by considering the combined influence of thermal effects and non‐Newtonian behavior of the lubricant.
Design/methodology/approach
The variation of the viscosity due to the non‐Newtonian behavior of the lubricant and temperature rise is considered in the study. The numerical solution of the generalized Reynold's, equation governing the flow of the lubricant having variable viscosity along with the energy and heat conduction equations is obtained using finite element method. The non‐Newtonian lubricant has been assumed to follow the cubic shear stress law. The study includes performance of a double row symmetric hole entry hybrid journal bearing configuration containing 12 holes per row.
Findings
The results indicate that change in viscosity of lubricant affects the bearing design parameters.
Originality/value
The paper shows that accurate theoretical modeling of the bearing is an effective tool for the selection of design parameter such as bearing land width ratio (ab), restrictor design parameter (Cs2), and non‐linearity factor (K).
Details
Keywords
Yuan Kang, Cheng‐Hsien Chen, Jian‐Lin Lee, Juhn‐Horng Chen and Yeon‐Pun Chang
The purpose of this paper is to investigate the static stiffness of hydrostatic bearings with three constant compensations in types of constant‐flow pump, capillary and orifice…
Abstract
Purpose
The purpose of this paper is to investigate the static stiffness of hydrostatic bearings with three constant compensations in types of constant‐flow pump, capillary and orifice, and both single‐action and double‐action variable restrictors with cylindrical‐spool, tapered‐spool, and membrane types by film gradient and recess pressure.
Design/methodology/approach
This paper utilizes the equations of flow equilibrium to determine the variations of film thickness or displacement of loading table with respect to the varying of recess pressure. For a hydrostatic bearing whose recess pressures are controlled by compensations, the stiffness characteristics can be presented directly by these variations.
Findings
The usage range of recess pressure and compensation parameters should be selected to correspond to a variation with smallest gradient.
Originality/value
This paper proposes an extensive database as a critical requirement for the selection of types and parameters of the compensation as to yield the acceptable or optimized characteristics in design of hydrostatic bearings.