A. Calahorra, S. Sali, Z. Hamish and H. Dodiuk
Peel adhesion of an epoxy filleting compound and Parylene C conformal coating to plasma treated, solder mask coated substrates and the apparent contact angle of water on the…
Abstract
Peel adhesion of an epoxy filleting compound and Parylene C conformal coating to plasma treated, solder mask coated substrates and the apparent contact angle of water on the treated surfaces were evaluated. No significant improvement was achieved in the case of the epoxy filleting adhesive for most solder mask coatings studied. On the other hand, Parylene C peel adhesion significantly increased after substrates were treated with air plasma and reached the level of Silane coupling agent primed substrates. This was in contrast to the decrease in Parylene adhesion to argon plasma treated substrates in comparison with the non‐treated substrates. This was related to the oxygen functionalities created on the surfaces by the air plasma versus the ablative nature of the argon plasma. No clear correlation was found between peel strength and the water contact angle in the case of the epoxy adhesive, while for the Parylene conformal coating peel strength achieved its maximum value at the middle of the contact angle range which resulted from the pretreatments applied in this study. It is concluded that air plasma is a very efficient solder mask pretreatment for Parylene conformal coating that can replace Silane primer. Also, if a calibration curve is established for each solder mask‐adhesive and solder mask‐coating system, the apparent water contact angle can serve as a convenient quality control tool for printed circuit finishing processes.
Papanasam E. and Binsu J. Kailath
Al2O3 used as gate dielectric enables exploitation of higher electric field capacity of SiC, improving capacitive coupling and memory retention in flash memories. Passivation of…
Abstract
Purpose
Al2O3 used as gate dielectric enables exploitation of higher electric field capacity of SiC, improving capacitive coupling and memory retention in flash memories. Passivation of traps at interface and in bulk which causes serious threat is necessary for better performance. The purpose of this paper is to investigate the effect of post-deposition rapid thermal annealing (PDA) and post-metallization annealing (PMA) on the structural and electrical characteristics of Pd/Al2O3/6H-SiC capacitors.
Design/methodology/approach
Al2O3 film is deposited by ALD; PDA is performed by rapid thermal annealing (RTA) in N2 at 900°C for 1 min and PMA in forming gas for 10 and 40 min. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements data are studied in addition to capacitance-voltage (C-V) and current-voltage (I-V) characteristics for the fabricated Pd/Al2O3/SiC capacitors. Conduction mechanism contributing to the gate leakage current is extracted for the entire range of gate electric field.
Findings
RTA forms aluminum silicide at the interface causing an increase in the density of the interface states and gate leakage current for devices with an annealed film, when compared with an as-deposited film. One order improvement in leakage current has been observed for the devices with RTA, after subjecting to PMA for 40 min, compared with those devices for which PMA was carried out for 10 min. Whereas, no improvement in leakage current has been observed for the devices on as-deposited film, even after subjecting to PMA for 40 min. Conduction mechanisms contributing to gate leakage current are extracted for the investigated Al2O3/SiC capacitors and are found to be trapfilled limit process at low-field regions; trapassisted tunneling in the mid-field regions and Fowler–Nordheim (FN) tunneling are dominating in high-field regions.
Originality/value
The effect of PDA and PMA on the structural and electrical characteristics of Pd/Al2O3/SiC capacitors suitable for flash memory applications is investigated in this paper.
Details
Keywords
Yuchen Xi, Qinying Wang, Xinyu Tan, Xingshou Zhang, Lijin Dong, Yuhui Song, Liyang Liu and Dezhi Zeng
The purpose of this work is to design the wire beam electrode (WBE) of P110 steel and study its corrosion behavior and mechanism under high temperature and pressure.
Abstract
Purpose
The purpose of this work is to design the wire beam electrode (WBE) of P110 steel and study its corrosion behavior and mechanism under high temperature and pressure.
Design/methodology/approach
Packaging materials of the new type P110 steel WBE and high pressure stable WBE structure were designed. A metallurgical microscope (XJP-3C) and scanning electron microscopy (EV0 MA15 Zeiss) with an energy dispersive spectrometer were used to analyze the microstructure and composition of the P110 steel. The electrochemical workstation (CS310, CorrTest Instrument Co., Ltd) with a WBE potential and current scanner was used to analyze the corrosion mechanism of P110 steel.
Findings
According to the analysis of Nyquist plots at different temperatures, the corrosion resistance of P110 steel decreases with the increase of temperature under atmospheric pressure. In addition, Rp of P110 steel under high pressure is maintained in the range of 200 ∼ 375 Ωcm2, while that under atmospheric pressure is maintained in the range of 20 ∼ 160 Ωcm2, indicating that the corrosion products on P110 steel under high pressure is denser, which improves the corrosion resistance of P110 steel to a certain extent.
Originality/value
The WBE applied in high temperature and pressure environment is in blank. This work designed and prepared a WBE of P110 steel for high temperature and pressure environment, and the corrosion mechanism of P110 steel was revealed by using the designed WBE.
Details
Keywords
Reasmy Raj, Amirul Syafiq, Vengadaesvaran Balakrishnan, Shakeel Ahmad, Nasrudin Abd Rahim, Pouya Hassandarvish, Sazaly Abu Bakar and A.K. Pandey
This paper aims to fabricate a polymer-based polyethylene glycol (PEG) coating with acrylic resin as a binder that can show antiviral activity against the feline coronavirus…
Abstract
Purpose
This paper aims to fabricate a polymer-based polyethylene glycol (PEG) coating with acrylic resin as a binder that can show antiviral activity against the feline coronavirus (FCov) on the glass substrate.
Design/methodology/approach
The PEG/acrylic coating systems of different weight percentages were coated on the glass substrates using the spray-coating method and cured at room temperature for 24 h.
Findings
The coating system containing 20 Wt.% of PEG exhibits the highest antiviral activities as high as 99.9% against FCov compared with other samples.
Research limitations/implications
Findings will be useful in the development of antiviral coating for PPE fabrics by using the simple synthesis method.
Originality/value
Application of PEG as an antiviral agent in the antiviral coating system with high antiviral activities about 99.9%.
The purpose of this article is to provoke diversity scholars to think about the implications of the confluence of the racial disparities in the effects of the Coronavirus and the…
Abstract
Purpose
The purpose of this article is to provoke diversity scholars to think about the implications of the confluence of the racial disparities in the effects of the Coronavirus and the persistence of racial inequality for a new direction of theorizing in the field.
Design/methodology/approach
Drawing upon three major analogies between the Coronavirus and the virus of racism, the author discusses their similarities as a means to think about why racism persists despite efforts to eradicate it. The history of racism in the United States forms a key part of the discussion.
Findings
The current theoretical tools diversity scholars primarily use to address racial inequality in organizations may only at best mitigate, not eradicate, racism in organizations. There is a need to direct theoretical development toward the concepts of racialization and deracialization.
Research limitations/implications
The views and proposals for new theorizing reflect the author's positionality and biases. It also relies on three of the many possible analogies that can be made between racism as a virus and the Coronavirus.
Practical implications
Understanding racism through the lens of racialization and deracialization can help organizations and the leaders of them to identify the structures that embed racism and also how to change them.
Social implications
Understanding racism and processes of racialization is critical to achieving racial equality. Organizations are one of the main societal institutions that shape and perpetuate the racism and inequality among African-Americans and other people of color experience. Awareness of the continuing effects of racism is critical to anticipating how virus pandemics increase the vulnerability of marginalized racial groups to greater health risks and precariousness.
Originality/value
This essay provokes diversity scholars to engage in reflexive discomfort about the current path of theorizing in the field. It suggests ways that the concept of racialization can be used descriptively and normatively to theorize racism in organizations. In addition, it proposes deracialization as a frame for supplanting the ideology of White supremacy and theorizing nonracial organizations.