Search results
1 – 10 of 86Herbert De Gersem and Thomas Weiland
To propose an air‐gap element for electrical machine simulation which accounts for static and dynamic rotor eccentricity.
Abstract
Purpose
To propose an air‐gap element for electrical machine simulation which accounts for static and dynamic rotor eccentricity.
Design/methodology/approach
The air‐gap element technique is extended to account for a non‐centered rotor. The consistency, stability and convergence of the discretisation error are studied. A specialized efficient solution technique combining the conjugate gradient algorithm with fast Fourier transforms is developed.
Findings
The eccentric air‐gap technique offers better discretisation properties than the classical techniques based on remeshing. Thanks to the specialized solver, the computation times remain comparable.
Originality/value
The introduction of eccentricity in the air‐gap element used for finite element electrical machine simulation is a new development.
Details
Keywords
Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…
Abstract
Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.
Details
Keywords
Herbert De Gersem, Mariana Ion, Markus Wilke, Thomas Weiland and Andrzej Demenko
To propose trigonometric interpolation in combination with both sliding‐surface and moving‐band techniques for modelling rotation in finite‐element electrical machine models. To…
Abstract
Purpose
To propose trigonometric interpolation in combination with both sliding‐surface and moving‐band techniques for modelling rotation in finite‐element electrical machine models. To show that trigonometric interpolation is at least as accurate and efficient as standard stator‐rotor coupling schemes.
Design/methodology/approach
Trigonometric interpolation is explained concisely and put in a historical perspective. Characteristic drawbacks of trigonometric interpolation are alleviated one by one. A comparison with the more common locked‐step linear‐interpolation and mortar‐element approaches is carried out.
Findings
Trigonometric interpolation offers a higher accuracy and therefore can outperform standard stator‐rotor coupling techniques when equipped with an appropriate iterative solver incorporating Fast Fourier Transforms to reduce the higher computational cost.
Originality/value
The synthetic interpretation of trigonometric interpolation as a spectral‐element approach in the machine's air gap, the efficient iterative solver combining conjugate gradients with Fast Fourier Transforms. The unified application to both sliding‐surface and moving‐band techniques.
Details
Keywords
Armin Galetzka, Dimitrios Loukrezis and Herbert De Gersem
The purpose of this paper is to present the applicability of data-driven solvers to computationally demanding three-dimensional problems and their practical usability when using…
Abstract
Purpose
The purpose of this paper is to present the applicability of data-driven solvers to computationally demanding three-dimensional problems and their practical usability when using real-world measurement data.
Design/methodology/approach
Instead of using a hard-coded phenomenological material model within the solver, the data-driven computing approach reformulates the boundary value problem such that the field solution is directly computed on raw measurement data. The data-driven formulation results in a double minimization problem based on Lagrange multipliers, where the sought solution must conform to Maxwell’s equations while at the same time being as close as possible to the available measurement data. The data-driven solver is applied to a three-dimensional model of a direct current electromagnet.
Findings
Numerical results for data sets of increasing cardinality verify that the data-driven solver recovers the conventional solution. Additionally, the practical usability of the solver is shown by using real-world measurement data. This work concludes that the data-driven magnetostatic finite element solver is applicable to computationally demanding three-dimensional problems, as well as in cases where a prescribed material model is not available.
Originality/value
Although the mathematical derivation of the data-driven problem is well presented in the referenced papers, the application to computationally demanding real-world problems, including real measurement data and its rigorous discussion, is missing. The presented work closes this gap and shows the applicability of data-driven solvers to challenging, real-world test cases.
Details
Keywords
Mariana Ion, Herbert De Gersem, Markus Wilke and Thomas Weiland
To propose trigonometric interpolation in combination with the sliding‐surface technique for modeling rotation in electrical machine models discretised by the finite integration…
Abstract
Purpose
To propose trigonometric interpolation in combination with the sliding‐surface technique for modeling rotation in electrical machine models discretised by the finite integration technique (FIT).
Design/methodology/approach
Locked‐step, linear and trigonometric interpolation techniques are developed for coupling the stator and rotor model parts of an electrical machine model.
Findings
Linear and trigonometric interpolation should be preferred over the locked‐step approach. Three‐machine models with sliding‐surface coupling discretised by the FIT result in efficient and reliable models.
Originality/value
The introduction of sliding‐surface techniques in the FIT, the trigonometric interpolation used in combination, the application of the FIT for simulating electrical machines.
Details
Keywords
H. De Gersem, D. Lahaye, S. Vandewalle and K. Hameyer
Finite element discretizations of low‐frequency, time‐harmonic magnetic problems lead to sparse, complex symmetric systems of linear equations. The question arises which Krylov…
Abstract
Finite element discretizations of low‐frequency, time‐harmonic magnetic problems lead to sparse, complex symmetric systems of linear equations. The question arises which Krylov subspace methods are appropriate to solve such systems. The quasi minimal residual method combines a constant amount of work and storage per iteration step with a smooth convergence history. These advantages are obtained by building a quasi minimal residual approach on top of a Lanczos process to construct the search space. Solving the complex systems by transforming them to equivalent real ones of double dimension has to be avoided as such real systems have spectra that are less favourable for the convergence of Krylov‐based methods. Numerical experiments are performed on electromagnetic engineering problems to compare the quasi minimal residual method to the bi‐conjugate gradient method and the generalized minimal residual method.
Details
Keywords
The purpose of this paper is to offer a fast and reliable discretisation scheme for computing the electromagnetic fields inside a ferromagnetic cylinder, accounting for motional…
Abstract
Purpose
The purpose of this paper is to offer a fast and reliable discretisation scheme for computing the electromagnetic fields inside a ferromagnetic cylinder, accounting for motional eddy currents under high velocities and accounting for the severe ferromagnetic saturation of the rotor surface.
Design/methodology/approach
A nonlinear spectral‐element (SE) formulation is developed and compared to existing analytical and finite‐element approaches.
Findings
The proposed SE method results in a higher accuracy, allows for smaller models, avoids upwinding and needs less computation time. Disadvantages are the dense system matrix and the bad condition number.
Research limitations/implications
The SE approach is only developed and tested for 2D models with a single cylindrical domain.
Practical implications
The results of the paper may improve the design and optimisation of solid‐rotor induction machines and magnetic bearings.
Originality/value
The paper offers an appropriate solution for a computational problem, which already has been encountered by a large community of researchers and engineers dealing with high‐speed rotating devices.
Details
Keywords
Sebastian Schöps, Herbert De Gersem and Thomas Weiland
The purpose of this paper is to review the mutual coupling of electromagnetic fields in the magnetic vector potential formulation with electric circuits in terms of (modified…
Abstract
Purpose
The purpose of this paper is to review the mutual coupling of electromagnetic fields in the magnetic vector potential formulation with electric circuits in terms of (modified) nodal and loop analyses. It aims for an unified and generic notation.
Design/methodology/approach
The coupled formulation is derived rigorously using the concept of winding functions. Strong and weak coupling approaches are proposed and examples are given. Discretization methods of the partial differential equations and in particular the winding functions are discussed. Reasons for instabilities in the numerical time domain simulation of the coupled formulation are presented using results from differential-algebraic-index analysis.
Findings
This paper establishes a unified notation for different conductor models, e.g. solid, stranded and foil conductors and shows their structural equivalence. The structural information explains numerical instabilities in the case of current excitation.
Originality/value
The presentation of winding functions allows to generically describe the coupling, embed the circuit equations into the de Rham complex and visualize them by Tonti diagrams. This is of value for scientists interested in differential geometry and engineers that work in the field of numerical simulation of field-circuit coupled problems.
Details
Keywords
Herbert De Gersem, Vaishnavi Srinivasan and Carsten Muehle
The purpose of this paper is to show that constructing magnetic equivalent circuits (MECs) for simulating accelerator magnets is possible by defining a three-port magnetic element…
Abstract
Purpose
The purpose of this paper is to show that constructing magnetic equivalent circuits (MECs) for simulating accelerator magnets is possible by defining a three-port magnetic element for modelling the T-shape field distribution, where the flux leaves the yoke and enters the aperture.
Design/methodology/approach
A linear three-port magnetic element is extracted from an analytical field solution and can be represented by a number of two-port elements. Its nonlinear counterpart is obtained as a combination of the corresponding nonlinear two-port elements. An improved nonlinear three-port element is developed on the basis of an embedded nonlinear one-dimensional finite element model.
Findings
The T-shaped field distribution comes together with a complicated interplay between the saturation of the ferromagnetic yoke parts and flux leaking to the aperture. This is more accurately modelled by the improved nonlinear three-port magnetic element.
Research limitations/implications
MECs have a limited validity range, especially for configurations where a high saturation level and fringing flux effects coexist.
Practical implications
The results of the paper appeal to be careful with applying nonlinear MECs for simulating bending magnets.
Originality/value
A new nonlinear three-port magnetic element for ferromagnetic yoke parts with T-shaped flux distribution has been developed.
Details
Keywords
Philip Desenfans, Zifeng Gong, Dries Vanoost, Konstantinos Gryllias, Jeroen Boydens, Herbert De Gersem and Davy Pissoort
When rotor and stator teeth are close, the connecting air gap flux tube's cross-sectional area exceeds the tooth overlap area. This flux fringing effect is disregarded in the air…
Abstract
Purpose
When rotor and stator teeth are close, the connecting air gap flux tube's cross-sectional area exceeds the tooth overlap area. This flux fringing effect is disregarded in the air gap permeance calculation of single-slice magnetic equivalent circuits (MECs) of electric motors with skewed rotors. This paper aims to extend an air gap permeance calculation method incorporating flux fringing for unskewed rotors to skewed and radially eccentric rotors.
Design/methodology/approach
Assuming axial independence, the unskewed air gap permeance is rotated according to the skew and integrated along the axial dimension, resulting in a first method. The integral is approximated analytically, resulting in a second method. Results are compared to a commonly used reference method and validated using a non-linear finite element method (FEM) simulation.
Findings
The proposed methods provide better alignment with the FEM validation compared to the reference method for skewed rotors and common rotor eccentricity, i.e. below 50% of the air gap length. The analytical method is shown to be competitive with the reference method regarding computational time cost.
Originality/value
Two novel air gap permeance methods are proposed for single-slice MECs with skewed rotors. Their characteristics are discussed and validated.
Details