Yinghong Li, Wei Tan, Wenjie Pei and Guorui Zhu
The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam…
Abstract
Purpose
The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.
Design/methodology/approach
The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.
Findings
The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.
Originality/value
The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.
Details
Keywords
Chunfu Wu, Guorui Ye, Yonghong Zhao, Baowen Ye, Tao Wang, Liangmo Wang and Zeming Zhang
Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper…
Abstract
Purpose
Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper aims to propose a novel auxetic honeycomb structure manufactured using selective laser melting and study the enhanced mechanical performance when subjected to in-plane compression loading.
Design/methodology/approach
A novel composite structure was designed and fabricated on the basis of an arrowhead auxetic honeycomb and filled with polyurethane foam. The deformation mechanism and mechanical responses of the structure with different structural parameters were investigated experimentally and numerically. With the verified simulation models, the effects of parameters on compression strength and energy absorption characteristics were further discussed through parametric analysis.
Findings
A good agreement was achieved between the experimental and simulation results, showing an evidently enhanced compression strength and energy absorption capacity. The interaction between the auxetic honeycomb and foam reveals to exploit a reinforcement effect on the compression performance. The parametric analysis indicates that the composite with smaller included angel and higher foam density exhibits higher plateau stress and better specific energy absorption, while increasing strut thickness is undesirable for high energy absorption efficiency.
Originality/value
The results of this study served to demonstrate an enhanced mechanical performance for the foam filled auxetic honeycomb, which is expected to be exploited with applications in aerospace, automobile, civil engineering and protective devices. The findings of this study can provide numerical and experimental references for the design of structural parameters.
Details
Keywords
Toufik Al Khawli, Hamza Bendemra, Muddasar Anwar, Dewald Swart and Jorge Dias
This paper presents a method for extracting the geometric primitives of a circle in a three-dimensional space from a discrete point cloud data set obtained by a laser stripe…
Abstract
Purpose
This paper presents a method for extracting the geometric primitives of a circle in a three-dimensional space from a discrete point cloud data set obtained by a laser stripe sensor. This paper aims to first establish a reference frame for the robotic drilling process by detecting the position and orientation of a reference hole on structural parts in a pre-drilling step, and second, to perform quality inspection of the hole in a post-drilling step.
Design/methodology/approach
The method is divided into the following steps: a plane is initially fitted on the data by evaluating the principle component analysis using singular value decomposition; the data points or measurements are then rotated around an arbitrary axis using the Rodrigues’ rotation formula such that the normal direction of the estimated plane and the z-axis direction is parallel; the Delaunay triangulation is constructed on the point cloud and the confidence interval is estimated for segmenting the data set located at the circular boundary; and finally, a circular profile is fitted on the extracted set and transformed back to the original position.
Findings
The geometric estimation of the circle in three-dimensional space constitutes of the position of the center, the diameter and the orientation, which is represented by the normal vector of the plane that the circle lives in. The method is applied on both simulated data set with the addition of several noise levels and experimental data sets. The main purpose of both the tests is to quantify the accuracy of the estimated diameter. The results show good accuracy (mean relative error < 1 per cent) and high robustness to noise.
Research limitations/implications
The proposed method is applied here to estimate the geometric primitives of only one circle (the reference hole). If multiple circles are needed, an addition clustering procedure is required to cluster the segmented data into multiple data sets. Each data set represents a circle. Also, the method does not operate efficiently on a sparse data sets. Dense data are required to cover the hole (at least ten scans to cover the hole diameter).
Practical implications
Researchers and practitioners can integrate this method with several robotic manufacturing applications where high accuracy is required. The extracted position and orientation of the hole are used to minimize the positioning and alignment errors between the mounted tool tip and the workpiece.
Originality/value
The method introduces data analytics for estimating the geometric primitives in the robotic drilling application. The main advantage of the proposed method is to register the top surface of the workpiece with respect to robot base frame with a high accuracy. An accurate workpiece registration is extremely necessary in the lateral direction (identifying where to drill), as well as in the vertical direction (identifying how far to drill).