Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 25 April 2022

Xiang Zhang, Yujie Li, Menghan Li, Guorui Zhang and Xiaori Liu

This paper aims to understand the influence of cylinder liner temperature on friction power loss of piston skirts and the synergistic effect of cylinder liner temperature on…

94

Abstract

Purpose

This paper aims to understand the influence of cylinder liner temperature on friction power loss of piston skirts and the synergistic effect of cylinder liner temperature on lubrication and heat transfer between piston skirt and cylinder liner.

Design/methodology/approach

A method to calculate the influence of cylinder liner temperature on piston skirt lubrication is proposed. The lubrication is calculated by considering the different temperature distribution of the cylinder liner and corresponding piston temperature calculated by a new multilayer thermal resistance model. This model uses the inner surface temperature of the cylinder liner as the starting point, and the starting temperature corresponding to different positions of the piston is calculated using the time integral average. Besides, the transient heat transfer of mixed lubrication is taken into account. Six temperature distribution schemes of cylinder liner are designed.

Findings

Six temperature distributions of cylinder liner are designed, and the maximum friction loss is reduced by 34.4% compared with the original engine. The increase in temperature in the second part of the cylinder liner will lead to an increase in friction power loss. The increase of temperature in the third part of the cylinder liner will lead to a decrease in friction power loss. The influence of temperature change in the third part of the cylinder liner on friction power loss is greater than that in the second part.

Originality/value

The influence of different temperature distribution of cylinder liner on the lubrication and friction of piston skirt cylinder liner connection was simulated.

Access Restricted. View access options
Article
Publication date: 9 January 2024

Chunfu Wu, Guorui Ye, Yonghong Zhao, Baowen Ye, Tao Wang, Liangmo Wang and Zeming Zhang

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper…

249

Abstract

Purpose

Auxetics metamaterials show high performance in their specific characteristics, while the absolute stiffness and strength are much weaker due to substantial porosity. This paper aims to propose a novel auxetic honeycomb structure manufactured using selective laser melting and study the enhanced mechanical performance when subjected to in-plane compression loading.

Design/methodology/approach

A novel composite structure was designed and fabricated on the basis of an arrowhead auxetic honeycomb and filled with polyurethane foam. The deformation mechanism and mechanical responses of the structure with different structural parameters were investigated experimentally and numerically. With the verified simulation models, the effects of parameters on compression strength and energy absorption characteristics were further discussed through parametric analysis.

Findings

A good agreement was achieved between the experimental and simulation results, showing an evidently enhanced compression strength and energy absorption capacity. The interaction between the auxetic honeycomb and foam reveals to exploit a reinforcement effect on the compression performance. The parametric analysis indicates that the composite with smaller included angel and higher foam density exhibits higher plateau stress and better specific energy absorption, while increasing strut thickness is undesirable for high energy absorption efficiency.

Originality/value

The results of this study served to demonstrate an enhanced mechanical performance for the foam filled auxetic honeycomb, which is expected to be exploited with applications in aerospace, automobile, civil engineering and protective devices. The findings of this study can provide numerical and experimental references for the design of structural parameters.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 7 May 2024

Yinghong Li, Wei Tan, Wenjie Pei and Guorui Zhu

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam…

54

Abstract

Purpose

The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.

Design/methodology/approach

The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.

Findings

The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.

Originality/value

The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 10 June 2014

Lei Zhang, Fengchun Tian, Xiongwei Peng, Xin Yin, Guorui Li and Lijun Dang

The purpose of this paper is to present a novel concentration estimation model for improving the accuracy and robustness of low-cost electronic noses (e-noses) with metal oxide…

360

Abstract

Purpose

The purpose of this paper is to present a novel concentration estimation model for improving the accuracy and robustness of low-cost electronic noses (e-noses) with metal oxide semiconductor sensors in indoor air contaminant monitoring and overcome the potential sensor drift.

Design/methodology/approach

In the quantification model, a piecewise linearly weighted artificial neural network ensemble model (PLWE-ANN) with an embedded self-calibration module based on a threshold network is studied.

Findings

The nonlinear estimation problem of sensor array-based e-noses can be effectively transformed into a piecewise linear estimation through linear weighted neural networks ensemble activated by a threshold network.

Originality/value

In this paper, a number of experimental results have been presented, and it also demonstrates that the proposed model has very good accuracy and robustness in real-time indoor monitoring of formaldehyde.

Details

Sensor Review, vol. 34 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 4 of 4
Per page
102050