Minyi Zhu, Guobin Gong, Xuehuiru Ding and Stephen Wilkinson
The study aims to investigate the effects of pre-loading histories (pre-shearing and pre-consolidation) on the liquefaction behaviour of saturated loose sand via discrete element…
Abstract
Purpose
The study aims to investigate the effects of pre-loading histories (pre-shearing and pre-consolidation) on the liquefaction behaviour of saturated loose sand via discrete element method (DEM) simulations.
Design/methodology/approach
The pre-shearing history is mimicked under drained conditions (triaxial compression) with different pre-shearing strain levels ranging from 0% to 2%. The pre-consolidation history is mimicked by increasing the isotropic compression to different levels ranging from 100 kPa to 300 kPa. The macroscopic and microscopic behaviours are analysed and compared.
Findings
Temporary liquefaction, or quasi-steady state (QSS), is observed in most samples. A higher pre-shearing or pre-consolidation level can provide higher liquefaction resistance. The ultimate state line is found to be unique and independent of the pre-loading histories in stress space. The Lade instability line prematurely predicts the onset of liquefaction for all samples, both with and without pre-loading histories. The redundancy index is an effective microscopic indicator to monitor liquefaction, and the onset of the liquefaction corresponds to the phase transition state where the value of redundancy index is one, which is true for all cases irrespective of the proportions of sliding contacts.
Originality/value
The liquefaction behaviour of granular materials still remains elusive, especially concerning the effects of pre-loading histories on soils. Furthermore, the investigation of the effects of pre-consolidation histories on undrained behaviour and its comparison to pre-sheared samples is rarely reported in the DEM literature.
Details
Keywords
Abstract
Purpose
The aim of this paper is to synthesize graphene-modified titanium dioxide (GR-TiO2) nanorod arrays nanocomposite films, so that these can enhance the photocatalytic properties of titanium dioxide and overcome the problem of difficult separation and recovery of photocatalysts.
Design/methodology/approach
The GR-TiO2 nanocomposite films were synthesized via hydrothermal method and spin-coating. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), ultraviolet–visible (UV-Vis) diffuse reflectance spectrum and Raman spectrum. The photocatalytic performance of the GR-TiO2 nanocomposite films for degrading Rhodamin B under ultraviolet (UV) was studied by a UV-Vis spectrophotometer. The photocatalytic enhancement mechanism of graphene was studied by photoelectrochemical analysis.
Findings
The introduction of graphene expanded the range of the optical response of TiO2 nanorod arrays, improving the separation efficiency of the photogenerated electron-hole pairs, and thus dramatically increasing its photocatalytic performance.
Research limitations/implications
A simple and novel way for synthesizing GR-TiO2 nanocomposite films has enhanced the photocatalytic performance of TiO2.
Originality/value
The photocatalyst synthesized is easy to separate and recycle in the process of photocatalytic reaction, so it is possible to achieve industrialization.