Kang-Jia Wang, Guo-Dong Wang and Feng Shi
The fractal and fractional calculus have obtained considerable attention in the electrical and electronic engineering since they can model many complex phenomena that the…
Abstract
Purpose
The fractal and fractional calculus have obtained considerable attention in the electrical and electronic engineering since they can model many complex phenomena that the traditional integer-order calculus cannot. The purpose of this paper is to develop a new fractional pulse narrowing nonlinear transmission lines model within the local fractional calculus for the first time and derive a novel method, namely, the direct mapping method, to seek for the nondifferentiable (ND) exact solutions.
Design/methodology/approach
By defining some special functions via the Mittag–Leffler function on the Cantor sets, a novel approach, namely, the direct mapping method is derived via constructing a group of the nonlinear local fractional ordinary differential equations. With the aid of the direct mapping method, four groups of the ND exact solutions are obtained in just one step. The dynamic behaviors of the ND exact solutions on the Cantor sets are also described through the 3D graphical illustration.
Findings
It is found that the proposed method is simple but effective and can construct four sets of the ND exact solutions in just one step. In addition, one of the ND exact solutions becomes the exact solution of the classic pulse narrowing nonlinear transmission lines model for the special case 9 = 1, which strongly proves the correctness and effectiveness of the method. The ideas in the paper can be used to study the other fractal partial differential equations (PDEs) within the local fractional derivative (LFD) arising in electrical and electronic engineering.
Originality/value
The fractional pulse narrowing nonlinear transmission lines model within the LFD is proposed for the first time in this paper. The proposed method in the work can be used to study the other fractal PDEs arising in electrical and electronic engineering. The findings in this work are expected to shed a light on the study of the fractal PDEs arising in electrical and electronic engineering.
Details
Keywords
Guo‐Dong Li, Daisuke Yamaguchi and Masatake Nagai
This paper aims to resolve the uncertain problem in suppliers selection chain management system through using the proposed multiple attribute decision‐making (MADM) approach.
Abstract
Purpose
This paper aims to resolve the uncertain problem in suppliers selection chain management system through using the proposed multiple attribute decision‐making (MADM) approach.
Design/methodology/approach
The approach which combines grey system theory with rough set theory is proposed.
Findings
This proposed approach take advantage of mathematical analysis power of grey system theory and at the same time take advantage of data mining and knowledge discovery power of rough set theory. It will be suitable to decision making under a more uncertain environment.
Originality/value
Provides a viewpoint on the attribute values and attribute weights of rough set decision table for all alternatives are decided by grey number based on grey system theory. The best ideal supplier can be decided by grey relational analysis based on grey number.
Details
Keywords
Abstract
Details
Keywords
Smitkumar Savsani, Shamsher Singh and Harlal Singh Mali
Medical devices are undergoing rapid changes because of the increasing affordability of advanced technologies like additive manufacturing (AM) and three-dimensional scanning. New…
Abstract
Purpose
Medical devices are undergoing rapid changes because of the increasing affordability of advanced technologies like additive manufacturing (AM) and three-dimensional scanning. New avenues are available for providing solutions and comfort that were not previously conceivable. The purpose of this paper is to provide a comprehensive review of the research on developing prostheses using AM to understand the opportunities and challenges in the domain. Various studies on prosthesis development using AM are investigated to explore the scope of integration of AM in prostheses development.
Design/methodology/approach
A review of key publications from the past two decades was conducted. Integration of AM and prostheses development is reviewed from the technologies, materials and functionality point of view to identify challenges, opportunities and future scope.
Findings
AM in prostheses provides superior physical and cognitive ergonomics and reduced cost and delivery time. Patient-specific, lightweight solutions for complex designs improve comfort, functionality and clinical outcomes. Compared to existing procedures and methodologies, using AM technologies in prosthetics could benefit a large population.
Originality/value
This paper helps investigate the impact of AM and related technology in the field of prosthetics and can also be viewed as a collection of relevant medical research and findings.
Details
Keywords
Hua Ding, Yanhong Huang, Jianqi Shi, Qi Shi and Yang Yang
Automatic guided vehicles (AGVs) are widely used in industrial fields. But most control strategies merely take the lateral force into consideration. This will reduce the accuracy…
Abstract
Purpose
Automatic guided vehicles (AGVs) are widely used in industrial fields. But most control strategies merely take the lateral force into consideration. This will reduce the accuracy, stability and robustness and will pay additional costs. Therefore, this paper aims to design a control strategy that initially considers lateral force. Thereby, it will improve the accuracy, stability and robustness and reduce the overall cost of AGV.
Design/methodology/approach
To achieve the goal of comprehensively improving AGV operating performance, this paper presents a new scheme, combining the dual-wheeled chassis model (DCM) using proportional–integral–differential (PID) control and a supporting quick response (QR) code navigation technology. DCM is the core, which analyzes the deviation caused by lateral force. Then, DCM with PID control by the control law is combined to suppress the errors. Meanwhile, QR code navigation technology provides effective data support for the control strategy.
Findings
Most AGV experiments are carried out in a standard environment. However, this study prepares unfavorable scenarios and operating conditions for the experiments that generate detailed data to demonstrate this study’s strategy, which can make an accurate, stable and robust operation process of AGV under various adverse environmental and mechanical factors.
Originality/value
This study proposed DCM, fully considering lateral force and converting the force into velocity. Subsequently, PID controls the speed of two wheels to reduce the error. QR code provides an efficient and low – cost way to obtain information. The three are cleverly combined as a novel industrial AGV control strategy, which can comprehensively improve the operating performance while reducing overall costs.