Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 November 2021

Yi Liu, Guangyao Qiu, Tao Li, Ang Yan, Yongfeng Liu, Rongjun Qu and Changmei Sun

To treat water pollution, especially the contamination resulted from organic dyes has aroused significant attention around the world, this study aims to prepare the metal organic…

153

Abstract

Purpose

To treat water pollution, especially the contamination resulted from organic dyes has aroused significant attention around the world, this study aims to prepare the metal organic framework (MOF) materials hybridizing with poly(p-phenylene terephthalamide) (PPTA) by means of a facile refluxing method and to systematically investigate adsorption performance for anionic dye Congo red as target molecule from aqueous solution.

Design/methodology/approach

The MOF materials hybridized by PPTA were fabricated by virtue of a facile refluxing method, characterized by thermogravimetric analysis, X-ray powder diffraction, Fourier transform infrared and pore structure.

Findings

The results showed that pseudo-second-order kinetic model could better describe the adsorption process for all the four materials, whereas Elovich model also fitted the process for the hybrid materials with PPTA. Adsorption isotherm analyses indicated that Langmuir isotherm could be used to describe the adsorption process. Introduction of appropriate amount of PPTA could enhance the adsorption affinity of the MOF materials for Congo red, and the maximum adsorption capacity could reach as high as 1,053.41 mg/g while that of the MOF material without PPTA was 666.67 mg/g, indicating introduction of PPTA could change the microenvironment of the MOF materials and increase the adsorption sites, leading to high adsorption efficiency.

Research limitations/implications

The microstructure of MOF hybridized materials in detail is the further and future investigation.

Practical implications

This study will provide a method to prepare MOF materials with high efficiency to treat anionic dyes like Congo red from aqueous solution.

Originality/value

Owing to the special characteristics of PPTA and similar to carbon tube, PPTA was introduced into MOF material to increased corresponding water stability. Because of aromatic ring and amide group on the surface of PPTA, the adsorption efficiency of the hybridized MOF material with appropriate amount of PPTA was greatly enhanced.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 8 January 2018

Mo Jintao, Gu Chaohua, Pan Xiaohong, Zheng Shuiying and Ying Guangyao

For moderate pressure and high pressure gear pumps, the temperature failure problem of bearings is now of considerable concern because of their heavy loads. However, the compact…

130

Abstract

Purpose

For moderate pressure and high pressure gear pumps, the temperature failure problem of bearings is now of considerable concern because of their heavy loads. However, the compact structure and the efficiency consideration make it extremely difficult to improve the bearing cooling. A self-circulating oil bearing system is developed for gear pumps with self-lubricating bearings to solve this problem. The oil is aspirated in from the low pressure chamber of the gear pump and discharged to the same chamber by using the pressure difference in the journal bearing, thus achieving the self-circulation.

Design/methodology/approach

An experiment test rig has been built for the feasibility study. The oil flow rate under different speeds has been recorded. Furthermore, the temperatures of the bearings with or without the oil circulation have been compared. Additionally, the oil flow in the test rig has been simulated using computational fluid dynamics codes.

Findings

The experimental and numerical results agree well. The experimental results indicate that the oil flow rate increases approximately linearly with the speed and the bearing temperature can be lowered successfully. The calculation results indicate that the bearing load capacity is nearly the same. Both the experimental and numerical studies establish that the self-circulating oil bearing system works successfully.

Originality value

As far as the authors know, it is the first time to find that the self-circulation can be built using the pressure difference in the bearing oil film, and this principle can be applied in the cooling and lubrication of the gear pumps to solve the temperature failure problem.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2
Per page
102050