Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 August 2019

Angus Jeang, Chang Pu Ko, Chien-Ping Chung, Francois Liang and Guan-Ying Chen

This study considers the five factors of a car rotation system: angle (F1), arm length (F2), toe in and out (F3), width (F4) and length (F5). The purpose of this paper is to fine…

136

Abstract

Purpose

This study considers the five factors of a car rotation system: angle (F1), arm length (F2), toe in and out (F3), width (F4) and length (F5). The purpose of this paper is to fine tune the design so it produces the smoothest response to various rotation angles.

Design/methodology/approach

In the case of Ackerman’s principle, the response surface methodology (RSM) was used to analyze data when encountering different quality characteristics at various rotation angles.

Findings

In this study, RSM was used to obtain the best factor and the best reaction value for the five factors of a car rotation system.

Practical implications

In this study, the four-wheel steering of a car is taken as an example. When the current wheel is turned, the intersection of the left and right wheels of the front axle falls on the extension line of the rear wheel. In this case, the steering will be the smoothest. In this example, we selected angle (F1), arm length (F2), toe in and out (F3), width (F4) and length (F5) as experimental factors, hoping to satisfy the Ackerman principle.

Social implications

Traditionally, when dealing with four-wheel steering problems, solutions may be based on past experience or on new information used to formulate R&D plans. In this study, the combination of statistical factors and optimization is used to find the optimal combination of factors and the relationship between factors.

Originality/value

In the past, most literature relied on kinematics to study the car rotation system due to a lack of experimental design and analysis concepts. However, this study aims to achieve the above goals in finding the solution, which can be used to predict reaction values.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Access Restricted. View access options
Article
Publication date: 21 June 2022

Ying-Jie Guan, Yong-Ping Li and Peng Zeng

To solve the problems of short battery life and low transportation safety of logistics drones, this paper aims to propose a design of logistics unmanned aerial vehicles (UAV) wing…

269

Abstract

Purpose

To solve the problems of short battery life and low transportation safety of logistics drones, this paper aims to propose a design of logistics unmanned aerial vehicles (UAV) wing with a composite ducted rotor, which combines fixed wing and rotary-wing.

Design/methodology/approach

This UAV adopts tiltable ducted rotor combined with fixed wing, which has the characteristics of fast flight speed, large carrying capacity and long endurance. At the same time, it has the hovering and vertical take-off and landing capabilities of the rotary-wing UAV. In addition, aerodynamic simulation analysis of the composite model with a fixed wing and a ducted rotor was carried out, and the aerodynamic influence of the composite model on the UAV was analyzed under different speeds, fixed wing angles of attack and ducted rotor speeds.

Findings

The results were as follows: when the speed of the ducted rotor is 2,500 rpm, CL and K both reach maximum values. But when the speed exceeds 3,000 rpm, the lift will decrease; when the angle of attack of the fixed wing is 10° and the rotational speed of the ducted rotor is about 3,000 rpm, the aerodynamic characteristics of the wing are better.

Originality/value

The novelty of this work comes from a composite wing design of a fixed wing combined with a tiltable ducted rotor applied to the logistics UAVs, and the aerodynamic characteristics of the design wing are analyzed.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 13 December 2023

Ying-Jie Guan and Yong-Ping Li

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…

135

Abstract

Purpose

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.

Design/methodology/approach

Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.

Findings

The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.

Originality/value

The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 3 of 3
Per page
102050