Search results

1 – 6 of 6
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 May 2023

Grzegorz Budzik, Tomasz Dziubek, Łukasz Paweł Przeszłowski, Bartłomiej Sobolewski, Mariusz Dębski and Małgorzata Ewa Gontarz

Manufacturing of products loaded with torque in an incremental process should take into account the strength in relation to the internal structure of the details. Incremental…

102

Abstract

Purpose

Manufacturing of products loaded with torque in an incremental process should take into account the strength in relation to the internal structure of the details. Incremental processes allow for obtaining various internal structures, both in the production process itself and as a result of designing a three-dimensional computer-aided design model with programmable strength. Finite element analysis (FEA) is often used in the modeling process, especially in the area of topological optimization. There is a lack of data for numerical simulation processes, especially for the design of products loaded with torque and manufactured additive manufacturing (AM). The purpose of this study is to present the influence of the internal structure of samples produced in the material extrusion (MEX) technology on the tested parameters in the process of unidirectional torsion and to present the practical application of the obtained results on the example of a spline connection.

Design/methodology/approach

The work involved a process of unidirectional torsion of samples with different internal structures, produced in the MEX technology. The obtained results allowed for the FEA of the spline connection, which was compared with the test of unidirectional torsion of the connection.

Findings

The performance of the unidirectional torsion test and the obtained results allowed us to determine the influence of the internal structure and its density on the achieved values of the tested parameters of the analyzed prototype materials. The performed FEA of the spline connection reflects the deformation of the produced connection in the unidirectional torsion test.

Originality/value

There are no standards for the torsional strength of elements manufactured from polymeric materials using MEX methods, which is why the industry often does not use these methods due to the need to spend time on research, which is associated with high costs. In addition, the industry is vary of unknown solutions and limits their use. Therefore, it is important to determine, among others, the strength parameters of components manufactured using incremental methods, including MEX, so that they can be widely used because of their great potential and thus gain trust among the recipient market. In addition, taking into account the different densities of the applied filling structure of the samples made of six prototype materials commonly available from manufacturers allowed us to determine its effect on the torsional strength. The presented work can be the basis for constructors dealing with the design of elements manufactured in the MEX technology in terms of torsional strength. The obtained results also complement the existing material base in the FEA software and perform the strength analysis before the actual details are made to verify the existing irregularities that affect the strength of the details. The analysis of unidirectional torsion made it possible to supplement the material cards, which often refer to unprocessed material, e.g. in MEX processes.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 3 May 2016

Pawel Rokicki, Bogdan Kozik, Grzegorz Budzik, Tomasz Dziubek, Jacek Bernaczek, Lukasz Przeszlowski, Olimpia Markowska, Bartlomiej Sobolewski and Arkadiusz Rzucidlo

The purpose of this paper is to present the methodology for manufacturing of aircraft transmission gears using incremental method of rapid prototyping (RP) – direct metal laser…

599

Abstract

Purpose

The purpose of this paper is to present the methodology for manufacturing of aircraft transmission gears using incremental method of rapid prototyping (RP) – direct metal laser sintering (DMLS). The production of prototypes from metallic powders using described system allows the execution of final elements of complex structures with additional economic impacts.

Design/methodology/approach

The paper describes the use of selective laser sintering method (DMLS) by EOS Company. Whole chain of production of prototype is presented with the addition of geometric accuracy measurements by blue light laser device.

Findings

Presented in the research analysis of SLS/SLM technologies as rapid manufacturing systems shows that they can be applied in the production of prototypes used in the manufacturing process of gears for propulsion systems in aviation industry. Also, very important is the geometrical accuracy of gear prototypes produced by incremental methods. It determines subsequent treatment steps for aircraft propulsion system gears.

Practical Implications

The use of RP techniques as an alternative for conventionally used manufacturing method has mainly an economic impact related to the cost of time-consuming process and amount of defected elements appearing in serial production.

Originality/value

This paper presents possibility to use RP – DMLS system – for propulsion elements of aircraft structure. This research is original because of the complex description of the whole chain of manufacturing process. Additionally, geometrical accuracy measurement methodology by blue light presented with the RP method of manufacturing gives the research a unique characteristic.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 3 May 2016

Pawel Rokicki, Grzegorz Budzik, Krzysztof Kubiak, Tomasz Dziubek, Malgorzata Zaborniak, Bogdan Kozik, Jacek Bernaczek, Lukasz Przeszlowski and Andrzej Nowotnik

The purpose of this paper is to present coordinate measuring system possibilities in the meaning of the geometric accuracy assessment of hot zone elements in aircraft engines. The…

321

Abstract

Purpose

The purpose of this paper is to present coordinate measuring system possibilities in the meaning of the geometric accuracy assessment of hot zone elements in aircraft engines. The aim of the paper is to prove that this method, which uses blue light and is most sufficient and cost-saving method, can to be used in the production line for serial manufacturing of elements, for which a high level of accuracy is required.

Design/methodology/approach

The analysis of the geometric accuracy of the blades was performed using non-contact optical coordinate scanner ATOS Triple Scan II Blue Light, manufactured by GOM Company, at the Department of Mechanical Engineering, Rzeszów University of Technology. Geometric analysis was conducted for blades manufactured from different waxes (A7Fr/60 and RealWax VisiJet CPX200), thus comparing injection technique and rapid prototyping (RP) method, and for casting made of Inconel 713C nickel-based superalloy.

Findings

The analysis of the criteria for the method of blades’ measuring selection showed that the chosen system successfully met all criteria for the verification of blades’ geometry at the selected stages of the process. ATOS II optical scanner with blue light technology allows measurement almost regardless of daylight or artificial (white) light. This allows the application of the measurement system in the production cycle, thus eliminating the need to create special conditions for measurements.

Practical implications

Requirements related to the accuracy of measured values, diversity and allowable measurement time are linked with the methods of production. Modern manufacturing methods based on computer-aided design systems/manufacturing/engineering systems require a non-contact optical measurement method based on the computer-aided-based coordinate measuring technique. In case of the non-contact optical scanning method based on the ATOS GOM measuring system, time and measurement costs depend on the methodology of measurement and the possibility of its automation. This is why the presented paper has a practical impact on possibilities for the automation of geometric accuracy measurements of obtained elements in the series production line.

Social implications

The use of ATOS Triple Scan II Blue Light by GOM Company allows the reduction of cost and time of production because of the possibility of the introduction of this system in an automated production line. Additionally, the measurement of hot section blades of aircraft engines by using the blue light method is much more accurate and has implication as it impacts safety of further used manufactured elements.

Originality/value

This paper presents the possibility of using the ATOS Triple Scan II Blue Light measuring system for geometric accuracy measurements in case of hot section blades of aircraft engines. This research is original because it describes three model geometric accuracy measurements, wax model obtained using the injection technique, wax model obtained using the I RP process and casting made of Inconel 713C nickel-based superalloy.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 1 July 2014

Paweł Rokicki, Grzegorz Budzik, Krzysztof Kubiak, Jacek Bernaczek, Tomasz Dziubek, Marek Magniszewski, Andrzej Nowotnik, Jan Sieniawski, Hubert Matysiak, Rafał Cygan and Andrzej Trojan

The purpose of this paper is to present the advantages of computer-aided design/rapid prototyping (CAD/RP) usage in designing and manufacturing of the core models used for precise…

559

Abstract

Purpose

The purpose of this paper is to present the advantages of computer-aided design/rapid prototyping (CAD/RP) usage in designing and manufacturing of the core models used for precise casting with direct and single solidification of aircraft engine turbine blade cores.

Design/methodology/approach

The process of modelling three-dimensional CAD geometry of research blade in relation to the model of the core was presented with different wax types used in the RP technique.

Findings

The geometry of the blade model has been designed in a way which allows making a silicon mould on the basis of a base prototype in the process of rapid tooling (RP/RT). Filing by different wax types was investigated in mean of the impact on filling accuracy of the mould cavity.

Originality/value

The resulting models were used to make ceramic moulds and carry further work on the development of casting technology in the process of directional solidification and single crystal solidification of core blades of aircraft engines.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Access Restricted. View access options
Article
Publication date: 1 August 2008

Mariusz Sobolak and Grzegorz Budzik

The purpose of this paper is to determine the instantaneous contact area in a gearbox using rapid prototyping.

756

Abstract

Purpose

The purpose of this paper is to determine the instantaneous contact area in a gearbox using rapid prototyping.

Design/methodology/approach

The determination of the contact area utilizes one of the RP techniques, i.e. stereolithography. Stereolithography enables the making of gears with complex profiles, which are difficult to obtain by means of other machining methods. A model of a bevel gearbox with Gleason spiral generated modify roll (Gleason SGM) gears with circular‐arc profiles of teeth is applied as an example for testing. A prototype of the gearbox was made using SLA 250 apparatus.

Findings

Correct mating of gears and their kinematical precision depend on the shape and size of the instantaneous contact area, as well as changes during the turning of gears. Contact between gear surfaces of a geometrically ideal gearbox occurs at a point or line, but, because of a deformability of mating flanks teeth, in reality it is always a certain surface. This paper presents research on the instantaneous contact area with area on the surface of a flank tooth, which is in contact with the mating surface of another tooth at a specific moment.

Originality/value

The described method in the paper enables a dynamic determination of the mating area gearbox. Existing experimental methods enable only a static observation of the mating area. A stand test was built and enables an exact meshing of mating gears. Gears were made of transparent material, SL‐5170, which enables observation of the instantaneous contact area.

Details

Rapid Prototyping Journal, vol. 14 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 14 October 2013

Grzegorz Budzik, Bogdan Kozik and Jacek Pacana

The analysis, carried out for this publication, concerned checking the nature of mating of gear wheels with different load conditions. The computation was made applying FEM in…

228

Abstract

Purpose

The analysis, carried out for this publication, concerned checking the nature of mating of gear wheels with different load conditions. The computation was made applying FEM in Abaqus 6.10-1 program and concerned spur gears in dual-power-path gears made of ABS. The same geometrical models, material parameters and boundary conditions were assumed for all the analysed stages of the computation. However, the values of torque transmitted from active wheels to passive wheel of the gearing were changed. The paper aims to discuss these issues.

Design/methodology/approach

Observing changes of stress levels for toothed wheel and pinions allows to state that for relatively low load values, bending stresses at tooth root change proportionally to the change of the applied load.

Findings

Values of contact stresses on mating teeth flanks were also defined for the most loaded part of the dual-power-path gearing, namely for a pinion. In case of contact stresses, it was observed that together with constant increase of torque value, the values of stresses change but the nature of these changes is not proportional to the applied load. Out of all the analysed variants, the most favourable, from the point of view of durability, was the situation in initial (theoretical) model with regular power division on all mating wheels.

Originality/value

Conclusions drawn as a result of numerical computation are helpful in defining the nature of work of dual-power-path gearing in different load conditions and will be compared to results of stand tests of the analysed gearing.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 6 of 6
Per page
102050