Sijie Ni, Grégory Bauw, Raphael Romary, Bertrand Cassoret and Jean Le Besnerais
This paper aims to optimize passive damper system (PDS) design by configuring its parameters to improve its performance and behavior in permanent magnet synchronous machines…
Abstract
Purpose
This paper aims to optimize passive damper system (PDS) design by configuring its parameters to improve its performance and behavior in permanent magnet synchronous machines (PMSM).
Design/methodology/approach
First, the principle and effectiveness of the PDS are recalled. Second, the impact of different PDS parameters on its operation is analyzed. Third, a multi-objective optimization is proposed to explore a compromise design of PDS. Finally, the transient finite element method simulation is performed to validate the optimized design, which can ensure an excellent noise reduction effect and weaker negative impacts.
Findings
A suitable capacitance value in PDS is a key to realizing the damping effect. A larger copper wire can improve the noise reduction performance of PDS and reduce its Joule losses. A compromise solution obtained from a multi-objective optimization remains the excellent noise reduction and reduces Joule losses.
Originality/value
This paper explores the impact of PDS parameters on its operation and provides an orientation of PDS optimization, which is favorable to extend its application in different electrical machines.
Details
Keywords
Gregory Bauw, Bertrand Cassoret, Olivier Ninet and Raphael Romary
The purpose of this paper is to present a design method for induction machines including a three-phase damper winding for noise and vibrations reduction.
Abstract
Purpose
The purpose of this paper is to present a design method for induction machines including a three-phase damper winding for noise and vibrations reduction.
Design/methodology/approach
In the first part, the principle of the damper winding is recalled. The second part presents the iterative design method which is applied on a 4-kW pulse width modulation (PWM)-fed induction machine to study the impact of the additional winding on the geometry. In the third part, the finite-element method is used to validate the designed geometry and highlight the harmonic flux density reduction. Finally, some experimental results are given.
Findings
The study shows that the impact of the additional three-phase winding on the geometry and weight of the machine is low. Moreover, the proposed noise reduction method allows one to reduce the total noise level of a PWM-fed induction machine up to 8.5 dBA.
Originality/value
The originality of the paper concerns the design and characterization of a three-phase damper winding for a noiseless induction machine. The principle of this proposed noise reduction method is new and has been patented.
Details
Keywords
Mohamed Amine Hebri, Abderrahmane Rebhaoui, Gregory Bauw, Jean-Philippe Lecointe, Stéphane Duchesne, Gianluca Zito, Abdelli Abdenour, Victor Mediavilla Santos, Vincent Mallard and Adrien Maier
The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency…
Abstract
Purpose
The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency and the power density of the selected motor.
Design/methodology/approach
This paper presents a study to improve the power density and efficiency of e-motors for electric traction applications with high operating speed. The studied machine is a yokeless-stator axial flux permanent magnet synchronous motor with a dual rotor. The methodology consists in using different magnetic materials for an optimal design of the stator and rotor magnetic circuits to improve the motor performance. The candidate magnetic materials, adapted to the constraints of e-mobility, are made of thin laminations of Si-Fe nonoriented grain electrical steel, Si-Fe grain-oriented electrical steel (GOES) and iron-cobalt Permendur electrical steel (Co-Fe).
Findings
The mixed GOES-Co-Fe structure allows to reach 10 kW/kg in rated power density and a high efficiency in city driving conditions. This structure allows to make the powertrain less energy consuming in the battery electric vehicles and to reduce CO2 emissions in hybrid electric vehicles.
Originality/value
The originality of this study lies in the improvement of both power density and efficiency of the electric motor in automotive application by using different magnetic materials through a multiobjective optimization.