Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 24 November 2020

Sumin Helen Koo, Young Bin Lee, Changhwan Kim, Gibaek Kim, Giuk Lee and Je-Sung Koh

The purpose of this research was to develop clothing-typed soft wearable robot embedded with textile-based actuators on ankles for elderly adults needing gait assistance.

893

Abstract

Purpose

The purpose of this research was to develop clothing-typed soft wearable robot embedded with textile-based actuators on ankles for elderly adults needing gait assistance.

Design/methodology/approach

Design guidelines were developed and they included function (type, targeting area, routing line and anchor points), design (size/fit, fabric/material, fastener, detail, color) and actuator (shape memory alloy type, size, deformation type, integration material, integration technique and evaluation method). Fabric-based actuator, integration methods to fabrics, routing lines and anchoring points were developed based on the guidelines and evaluated. Then, three long socks types and a pants type were designed and prototyped. Routing line position displacement measurement test was conducted with the prototypes. A survey was conducted to investigate satisfaction, likeness and use intention on the design/prototype to modify the designs.

Findings

Important design factors were identified, and design guidelines for clothing-typed soft wearable robots (SWRs) were developed. People satisfied the developed SWR designs and prototypes with mean scores over 4.60.

Originality/value

The results are expected to be helpful for designers and developers of SWRs in the development process, and they will ultimately be beneficial to members of the elderly population who have gait difficulties.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 20 June 2016

Rui Wang and Youhei Kawamura

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted…

781

Abstract

Purpose

The purpose of this paper is to present a design of climbing robot with magnetic wheels which can move on the surface of steel bridge. The locomotion concept is based on adapted lightweight magnetic wheel units with relatively high attractive force and friction force.

Design/methodology/approach

The robot has the main advantages of being compact (352 × – 215 × – 155 mm), lightweight (2.3 kg without battery) and simple mechanical structure. It is not only able to climb vertical walls and follow circumferential paths, but also able to pass complex obstacles such as bolts, steps, convex and concave corners with almost any inclination regarding gravity. By using a servo as a compliant joint, the wheel base can be changed to enable the robot to overcome convex corners.

Findings

The experiment results show that the climbing robot has a good performance on locomotion, and it is successful in negotiating the complex obstacles. On the other hand, the limitations in locomotion of the robot are also presented.

Originality/value

Compared with the past researches, the robot shows good performance on overcoming complex obstacles such as concave corners, convex corners, bolts and steps on the steel bridge. Magnetic wheel with the characterization of compact size and lightweight is able to provide bigger adhesion force and friction coefficient.

Details

Industrial Robot: An International Journal, vol. 43 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 2 of 2
Per page
102050