Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 July 2021

Giovani Gaiardo Fossati, Letícia Fleck Fadel Miguel and Walter Jesus Paucar Casas

This study aims to propose a complete and powerful methodology that allows the optimization of the passive suspension system of vehicles, which simultaneously takes comfort and…

139

Abstract

Purpose

This study aims to propose a complete and powerful methodology that allows the optimization of the passive suspension system of vehicles, which simultaneously takes comfort and safety into account and provides a set of optimal solutions through a Pareto-optimal front, in a low computational time.

Design/methodology/approach

Unlike papers that consider simple vehicle models (quarter vehicle model or half car model) and/or simplified road profiles (harmonic excitation, for example) and/or perform a single-objective optimization and/or execute the dynamic analysis in the time domain, this paper presents an effective and fast methodology for the multi-objective optimization of the suspension system of a full-car model (including the driver seat) traveling on an irregular road profile, whose dynamic response is determined in the frequency domain, considerably reducing computational time.

Findings

The results showed that there was a reduction of 28% in the driver seat vertical acceleration weighted root mean square (RMS) value of the proposed model, which is directly related to comfort, and, simultaneously, an improvement or constancy concerning safety, with low computational cost. Hence, the proposed methodology can be indicated as a successful tool for the optimal design of the suspension systems, considering, simultaneously, comfort and safety.

Originality/value

Despite the extensive literature on optimizing vehicle passive suspension systems, papers combining multi-objective optimization presenting a Pareto-optimal front as a set of optimal results, a full-vehicle model (including the driver seat), an irregular road profile and the determination of the dynamic response in the frequency domain are not found.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 1 of 1
Per page
102050