Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 June 2004

Olivier Chadebec, Jean‐Louis Coulomb, Gilles Cauffet, Jean‐Paul Bongiraud and Sébastien Guérin

This paper deals with the problem of magnetization identification. We consider a ferromagnetic body placed in an inductor field. The goal of this work is, from static magnetic…

317

Abstract

This paper deals with the problem of magnetization identification. We consider a ferromagnetic body placed in an inductor field. The goal of this work is, from static magnetic field measurements taken around the device, to obtain an accurate model of its magnetization. This inverse problem is usually ill‐posed and its solution is non‐unique. It is then necessary to use mathematical regularization. However, we prefer to transform it to a better posed one by incorporating our physical knowledge of the problem. Our approach is tested on the magnetization's identification of a real ferromagnetic sheet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2005

Sébastien Guerin, Jean‐Louis Coulomb and Gilles Cauffet

This paper presents a method to improve inverse problem resolution. This method focuses on the measurement set and particularly on sensor position. Based on experiment, it aims at…

219

Abstract

Purpose

This paper presents a method to improve inverse problem resolution. This method focuses on the measurement set and particularly on sensor position. Based on experiment, it aims at finding sensor position criteria to insure the least bad inverse problem solving.

Design/methodology/approach

The studied device is a magnetized steel sheet measured by four sensors. Three optimization techniques are compared: condition number, solid angle and signature optimization.

Findings

An efficient criterion to compare the inverse problem resolution quality is presented. The comparison of optimization techniques shows that only signature optimization gives accurate results.

Research limitations/implications

A relative simple case is studied in this paper: only four sensors are used to measure a steel sheet. Moreover magnetostatic low‐field case is supposed. Nevertheless techniques presented could be applied to more complex studies. Condition number and solid angle optimizations techniques should be tested with more sensors to confirm or infirm their inefficiency.

Practical implications

This paper presents the first step of a larger study concerning ships for naval application. The aim is to predict magnetic anomaly created by ship to compensate it. This anomaly could be computed through the resolution of an inverse problem based on internal measurements. The signature optimization technique could be used to find the optimal sensor location onboard.

Originality/value

Traditional regularization techniques are focusing on adding mathematical or physical information to the system in order to improve it. This paper provides another approach to improve inverse problem resolution through measurement set. It shows that sensor position optimization should be efficient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 4 January 2008

G. Cauffet, J.L. Coulomb, S. Guerin, O. Chadebec and Y. Vuillermet

This paper aims to present the use of magnetic gradient, and magnetic potential measurements in the specific case of magnetization identification for a thin sheet. Usually…

250

Abstract

Purpose

This paper aims to present the use of magnetic gradient, and magnetic potential measurements in the specific case of magnetization identification for a thin sheet. Usually, induction measurements are only used.

Design/methodology/approach

After a brief description of the magnetic gradient and magnetic scalar potential notions, methods to calculate them are presented and validated. These two kinds of measurements are tested for a numerical identification case. Then, virtual measurements can be generated and used for inverse problem resolution. Advantages of using induction, magnetic gradient or magnetic potential measurements are then discussed.

Findings

A previous method to solve inverse problem based on induction measurement has been increased by the capability of using other kind of measurements. A numerical approach has allowed to validate the use of magnetic gradient or magnetic scalar potential measurement as information sources.

Originality/value

Usually, induction measurements are only used. Inversion resolution using other kind of measurements than the induction can be made. An experimental validation has been done for gradient measurements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3
Per page
102050