Behzad Karimi, Amir Hossein Niknamfar, Babak Hassan Gavyar, Majid Barzegar and Ali Mohtashami
Today’s, supply chain production and distribution of products to improve the customer satisfaction in the shortest possible time by paying the minimum cost, has become the most…
Abstract
Purpose
Today’s, supply chain production and distribution of products to improve the customer satisfaction in the shortest possible time by paying the minimum cost, has become the most important challenge in global market. On the other hand, minimizing the total cost of the transportation and distribution is one of the critical items for companies. To handle this challenge, this paper aims to present a multi-objective multi-facility model of green closed-loop supply chain (GCLSC) under uncertain environment. In this model, the proposed GCLSC considers three classes in case of the leading chain and three classes in terms of the recursive chain. The objectives are to maximize the total profit of the GCLSC, satisfaction of demand, the satisfactions of the customers and getting to the proper cost of the consumers, distribution centers and recursive centers.
Design/methodology/approach
Then, this model is designed by considering several products under several periods regarding the recovery possibility of products. Finally, to evaluate the proposed model, several numerical examples are randomly designed and then solved using non-dominated sorting genetic algorithm and non-dominated ranking genetic algorithm. Then, they are ranked by TOPSIS along with analytical hierarchy process so-called analytic hierarchy process-technique for order of preference by similarity to ideal solution (AHP-TOPSIS).
Findings
The results indicated that non-dominated ranked genetic algorithm (NRGA) algorithm outperforms non-dominated sorting genetic algorithm (NSGA-II) algorithm in terms of computation times. However, in other metrics, any significant difference was not seen. At the end, to rank the algorithms, a multi-criterion decision technique was used. The obtained results of this method indicated that NSGA-II had better performance than ones obtained by NRGA.
Originality/value
This study is motivated by the need of integrating the leading supply chain and retrogressive supply chain. In short, the highlights of the differences of this research with the mentioned studies are as follows: developing multi-objective multi-facility model of fuzzy GCLSC under uncertain environment and integrating the leading supply chain and retrogressive supply chain.
Details
Keywords
Y.P. Tsang, K.L. Choy, P.S. Koo, G.T.S. Ho, C.H. Wu, H.Y. Lam and Valerie Tang
This paper aims to improve operational efficiency and minimize accident frequency in cold storage facilities through adopting an effective occupational safety and health program…
Abstract
Purpose
This paper aims to improve operational efficiency and minimize accident frequency in cold storage facilities through adopting an effective occupational safety and health program. The hidden knowledge can be extracted from the warehousing operations to create the comfortable and safe workplace environment.
Design/methodology/approach
A fuzzy association rule-based knowledge management system is developed by integrating fuzzy association rule mining (FARM) and rule-based expert system (RES). FARM is used to extract hidden knowledge from real operations to establish the relationship between safety measurement, personal constitution and key performance index measurement. The extracted knowledge is then stored and adopted in the RES to establish an effective occupational and safety program. Afterwards, a case study is conducted to validate the performance of the proposed system.
Findings
The results indicate that the aforementioned relationship can be built in the form of IF-THEN rules. An appropriate safety and health program can be developed and applied to all workers, so that they can follow instructions to prevent cold induced injuries and also improve the productivity.
Practical implications
Because of the increasing public consciousness of occupational safety and health, it is important for the workers in cold storage facilities where the ambient temperature is at/below 10°C. The proposed system can address the social problem and promote the importance of occupational safety and health in the society.
Originality/value
This study contributes to the knowledge management system for improving the occupational safety and operational efficiency in the cold storage facilities.
Details
Keywords
Bokyoung Kang, Jae‐Yoon Jung, Nam Wook Cho and Suk‐Ho Kang
The purpose of this paper is to help industrial managers monitor and analyze critical performance indicators in real time during the execution of business processes by proposing a…
Abstract
Purpose
The purpose of this paper is to help industrial managers monitor and analyze critical performance indicators in real time during the execution of business processes by proposing a visualization technique using an extended formal concept analysis (FCA). The proposed approach monitors the current progress of ongoing processes and periodically predicts their probable routes and performances.
Design/methodology/approach
FCA is utilized to analyze relations among patterns of events in historical process logs, and this method of data analysis visualizes the relations in a concept lattice. To apply FCA to real‐time business process monitoring, the authors extended the conventional concept lattice into a reachability lattice, which enables managers to recognize reachable patterns of events in specific instances of business processes.
Findings
By using a reachability lattice, expected values of a target key performance indicator are predicted and traced along with probable outcomes. Analysis is conducted periodically as the monitoring time elapses over the course of business processes.
Practical implications
The proposed approach focuses on the visualization of probable event occurrences on the basis of historical data. Such visualization can be utilized by industrial managers to evaluate the status of any given instance during business processes and to easily predict possible subsequent states for purposes of effective and efficient decision making. The proposed method was developed in a prototype system for proof of concept and has been illustrated using a simplified real‐world example of a business process in a telecommunications company.
Originality/value
The main contribution of this paper lies in the development of a real‐time monitoring approach of ongoing processes. The authors have provided a new data structure, namely a reachability lattice, which visualizes real‐time progress of ongoing business processes. As a result, current and probable next states can be predicted graphically using periodically conducted analysis during the processes.
Details
Keywords
K.H. Leung, Daniel Y. Mo, G.T.S. Ho, C.H. Wu and G.Q. Huang
Accurate prediction of order demand across omni-channel supply chains improves the management's decision-making ability at strategic, tactical and operational levels. The paper…
Abstract
Purpose
Accurate prediction of order demand across omni-channel supply chains improves the management's decision-making ability at strategic, tactical and operational levels. The paper aims to develop a predictive methodology for forecasting near-real-time e-commerce order arrivals in distribution centres, allowing third-party logistics service providers to manage the hour-to-hour fast-changing arrival rates of e-commerce orders better.
Design/methodology/approach
The paper proposes a novel machine learning predictive methodology through the integration of the time series data characteristics into the development of an adaptive neuro-fuzzy inference system. A four-stage implementation framework is developed for enabling practitioners to apply the proposed model.
Findings
A structured model evaluation framework is constructed for cross-validation of model performance. With the aid of an illustrative case study, forecasting evaluation reveals a high level of accuracy of the proposed machine learning approach in forecasting the arrivals of real e-commerce orders in three different retailers at three-hour intervals.
Research limitations/implications
Results from the case study suggest that real-time prediction of individual retailer's e-order arrival is crucial in order to maximize the value of e-order arrival prediction for daily operational decision-making.
Originality/value
Earlier researchers examined supply chain demand, forecasting problem in a broader scope, particularly in dealing with the bullwhip effect. Prediction of real-time, hourly based order arrivals has been lacking. The paper fills this research gap by presenting a novel data-driven predictive methodology.
Details
Keywords
Y.P. Tsang, K.L. Choy, C.H. Wu, G.T.S. Ho, Cathy H.Y. Lam and P.S. Koo
Since the handling of environmentally sensitive products requires close monitoring under prescribed conditions throughout the supply chain, it is essential to manage specific…
Abstract
Purpose
Since the handling of environmentally sensitive products requires close monitoring under prescribed conditions throughout the supply chain, it is essential to manage specific supply chain risks, i.e. maintaining good environmental conditions, and ensuring occupational safety in the cold environment. The purpose of this paper is to propose an Internet of Things (IoT)-based risk monitoring system (IoTRMS) for controlling product quality and occupational safety risks in cold chains. Real-time product monitoring and risk assessment in personal occupational safety can be then effectively established throughout the entire cold chain.
Design/methodology/approach
In the design of IoTRMS, there are three major components for risk monitoring in cold chains, namely: wireless sensor network; cloud database services; and fuzzy logic approach. The wireless sensor network is deployed to collect ambient environmental conditions automatically, and the collected information is then managed and applied to a product quality degradation model in the cloud database. The fuzzy logic approach is applied in evaluating the cold-associated occupational safety risk of the different cold chain parties considering specific personal health status. To examine the performance of the proposed system, a cold chain service provider is selected for conducting a comparative analysis before and after applying the IoTRMS.
Findings
The real-time environmental monitoring ensures that the products handled within the desired conditions, namely temperature, humidity and lighting intensity so that any violation of the handling requirements is visible among all cold chain parties. In addition, for cold warehouses and rooms in different cold chain facilities, the personal occupational safety risk assessment is established by considering the surrounding environment and the operators’ personal health status. The frequency of occupational safety risks occurring, including cold-related accidents and injuries, can be greatly reduced. In addition, worker satisfaction and operational efficiency are improved. Therefore, it provides a solid foundation for assessing and identifying product quality and occupational safety risks in cold chain activities.
Originality/value
The cold chain is developed for managing environmentally sensitive products in the right conditions. Most studies found that the risks in cold chain are related to the fluctuation of environmental conditions, resulting in poor product quality and negative influences on consumer health. In addition, there is a lack of occupational safety risk consideration for those who work in cold environments. Therefore, this paper proposes IoTRMS to contribute the area of risk monitoring by means of the IoT application and artificial intelligence techniques. The risk assessment and identification can be effectively established, resulting in secure product quality and appropriate occupational safety management.
Details
Keywords
Julian Rott, Markus Böhm and Helmut Krcmar
Process mining (PM) has emerged as a leading technology for gaining data-based insights into organizations’ business processes. As processes increasingly cross-organizational…
Abstract
Purpose
Process mining (PM) has emerged as a leading technology for gaining data-based insights into organizations’ business processes. As processes increasingly cross-organizational boundaries, firms need to conduct PM jointly with multiple organizations to optimize their operations. However, current knowledge on cross-organizational process mining (coPM) is widely dispersed. Therefore, we synthesize current knowledge on coPM, identify challenges and enablers of coPM, and build a socio-technical framework and agenda for future research.
Design/methodology/approach
We conducted a literature review of 66 articles and summarized the findings according to the framework for Information Technology (IT)-enabled inter-organizational coordination (IOC) and the refined PM framework. The former states that within inter-organizational relationships, uncertainty sources determine information processing needs and coordination mechanisms determine information processing capabilities, while the fit between needs and capabilities determines the relationships’ performance. The latter distinguishes three categories of PM activities: cartography, auditing and navigation.
Findings
Past literature focused on coPM techniques, for example, algorithms for ensuring privacy and PM for cartography. Future research should focus on socio-technical aspects and follow four steps: First, determine uncertainty sources within coPM. Second, design, develop and evaluate coordination mechanisms. Third, investigate how the mechanisms assist with handling uncertainty. Fourth, analyze the impact on coPM performance. In addition, we present 18 challenges (e.g. integrating distributed data) and 9 enablers (e.g. aligning different strategies) for coPM application.
Originality/value
This is the first article to systematically investigate the status quo of coPM research and lay out a socio-technical research agenda building upon the well-established framework for IT-enabled IOC.
Details
Keywords
Abstract
Purpose
Demand forecast methodologies have been studied extensively to improve operations in e-commerce. However, every forecast inevitably contains errors, and this may result in a disproportionate impact on operations, particularly in the dynamic nature of fulfilling orders in e-commerce. This paper aims to quantify the impact that forecast error in order demand has on order picking, the most costly and complex operations in e-order fulfilment, in order to enhance the application of the demand forecast in an e-fulfilment centre.
Design/methodology/approach
The paper presents a Gaussian regression based mathematical method that translates the error of forecast accuracy in order demand to the performance fluctuations in e-order fulfilment. In addition, the impact under distinct order picking methodologies, namely order batching and wave picking. As described.
Findings
A structured model is developed to evaluate the impact of demand forecast error in order picking performance. The findings in terms of global results and local distribution have important implications for organizational decision-making in both long-term strategic planning and short-term daily workforce planning.
Originality/value
Earlier research examined demand forecasting methodologies in warehouse operations. And order picking and examining the impact of error in demand forecasting on order picking operations has been identified as a research gap. This paper contributes to closing this research gap by presenting a mathematical model that quantifies impact of demand forecast error into fluctuations in order picking performance.
Details
Keywords
H.Y. Lam, G.T.S. Ho, Daniel Y. Mo and Valerie Tang
Under the impact of Coronavirus disease 2019 (COVID-19), this paper contributes in the deployment of the Artificial Intelligence of Things (AIoT)-based system, namely AIoT-based…
Abstract
Purpose
Under the impact of Coronavirus disease 2019 (COVID-19), this paper contributes in the deployment of the Artificial Intelligence of Things (AIoT)-based system, namely AIoT-based Domestic Care Service Matching System (AIDCS), to the existing electronic health (eHealth) system so as to enhance the delivery of elderly-oriented domestic care services.
Design/methodology/approach
The proposed AIDCS integrates IoT and Artificial Intelligence (AI) technologies to (1) capture real-time health data of the elderly at home and (2) provide the knowledge support for decision making in the domestic care appointment service in the community.
Findings
A case study was conducted in a local domestic care centre which provided elderly oriented healthcare services to the elderly. By integrating IoT and AI into the service matching process of the mobile apps platform provided by the local domestic care centre, the results proved that customer satisfaction and the quality of the service delivery were improved by observing the key performance indicators of the transactions after the implementation of the AIDCS.
Originality/value
Following the outbreak of COVID-19, this is a new attempt to overcome the limited research done on the integration of IoT and AI techniques in the domestic care service. This study not only inherits the ability of the existing eHealth system to automatically capture and monitor the health status of the elderly in real-time but also improves the overall quality of domestic care services in term of responsiveness, effectiveness and efficiency.
Details
Keywords
Xiaoli Su, Lijun Zeng, Bo Shao and Binlong Lin
The production planning problem with fine-grained information has hardly been considered in practice. The purpose of this study is to investigate the data-driven production…
Abstract
Purpose
The production planning problem with fine-grained information has hardly been considered in practice. The purpose of this study is to investigate the data-driven production planning problem when a manufacturer can observe historical demand data with high-dimensional mixed-frequency features, which provides fine-grained information.
Design/methodology/approach
In this study, a two-step data-driven optimization model is proposed to examine production planning with the exploitation of mixed-frequency demand data is proposed. First, an Unrestricted MIxed DAta Sampling approach is proposed, which imposes Group LASSO Penalty (GP-U-MIDAS). The use of high frequency of massive demand information is analytically justified to significantly improve the predictive ability without sacrificing goodness-of-fit. Then, integrated with the GP-U-MIDAS approach, the authors develop a multiperiod production planning model with a rolling cycle. The performance is evaluated by forecasting outcomes, production planning decisions, service levels and total cost.
Findings
Numerical results show that the key variables influencing market demand can be completely recognized through the GP-U-MIDAS approach; in particular, the selected accuracy of crucial features exceeds 92%. Furthermore, the proposed approach performs well regarding both in-sample fitting and out-of-sample forecasting throughout most of the horizons. Taking the total cost and service level obtained under the actual demand as the benchmark, the mean values of both the service level and total cost differences are reduced. The mean deviations of the service level and total cost are reduced to less than 2.4%. This indicates that when faced with fluctuating demand, the manufacturer can adopt the proposed model to effectively manage total costs and experience an enhanced service level.
Originality/value
Compared with previous studies, the authors develop a two-step data-driven optimization model by directly incorporating a potentially large number of features; the model can help manufacturers effectively identify the key features of market demand, improve the accuracy of demand estimations and make informed production decisions. Moreover, demand forecasting and optimal production decisions behave robustly with shifting demand and different cost structures, which can provide manufacturers an excellent method for solving production planning problems under demand uncertainty.
Details
Keywords
In this chapter, four bi-objective vehicle routing problems are considered. Weighted-sum approach optimization models are formulated with the use of mixed-integer programming. In…
Abstract
In this chapter, four bi-objective vehicle routing problems are considered. Weighted-sum approach optimization models are formulated with the use of mixed-integer programming. In presented optimization models, maximization of capacity of truck versus minimization of utilization of fuel, carbon emission, and production of noise are taken into account. The problems deal with real data for green logistics for routes crossing the Western Pyrenees in Navarre, Basque Country, and La Rioja, Spain.
Heterogeneous fleet of trucks is considered. Different types of trucks have not only different capacities, but also require different amounts of fuel for operations. Consequently, the amount of carbon emission and noise vary as well. Modern logistic companies planning delivery routes must consider the trade-off between the financial and environmental aspects of transportation. Efficiency of delivery routes is impacted by truck size and the possibility of dividing long delivery routes into smaller ones. The results of computational experiments modeled after real data from a Spanish food distribution company are reported. Computational results based on formulated optimization models show some balance between fleet size, truck types, and utilization of fuel, carbon emission, and production of noise. As a result, the company could consider a mixture of trucks sizes and divided routes for smaller trucks. Analyses of obtained results could help logistics managers lead the initiative in environmental conservation by saving fuel and consequently minimizing pollution. The computational experiments were performed using the AMPL programming language and the CPLEX solver.