Soheil Bazazzadeh, Arman Shojaei, Mirco Zaccariotto and Ugo Galvanetto
The purpose of this paper is to apply the Peridynamic differential operator (PDDO) to incompressible inviscid fluid flow with moving boundaries. Based on the potential flow…
Abstract
Purpose
The purpose of this paper is to apply the Peridynamic differential operator (PDDO) to incompressible inviscid fluid flow with moving boundaries. Based on the potential flow theory, a Lagrangian formulation is used to cope with non-linear free-surface waves of sloshing water in 2D and 3D rectangular and square tanks.
Design/methodology/approach
In fact, PDDO recasts the local differentiation operator through a nonlocal integration scheme. This makes the method capable of determining the derivatives of a field variable, more precisely than direct differentiation, when jump discontinuities or gradient singularities come into the picture. The issue of gradient singularity can be found in tanks containing vertical/horizontal baffles.
Findings
The application of PDDO helps to obtain the velocity field with a high accuracy at each time step that leads to a suitable geometry updating for the procedure. Domain/boundary nodes are updated by using a second-order finite difference time algorithm. The method is applied to the solution of different examples including tanks with baffles. The accuracy of the method is scrutinized by comparing the numerical results with analytical, numerical and experimental results available in the literature.
Originality/value
Based on the investigations, PDDO can be considered a reliable and suitable approach to cope with sloshing problems in tanks. The paper paves the way to apply the method for a wider range of problems such as compressible fluid flow.
Details
Keywords
Taozhi Zhuang, Haojie Ji, Ying Wang, Hongjuan Wu and Meiling Zeng
Globally, co-production is of great significance in promoting neighborhood regeneration. However, in the Chinese context, characterized by a governance system with strong…
Abstract
Purpose
Globally, co-production is of great significance in promoting neighborhood regeneration. However, in the Chinese context, characterized by a governance system with strong government discourse power and a tradition of passive public participation, co-production has faced significant challenges. To address issues, this paper aims to deeply understand the co-production behaviors and strategy choices of local governments and residents in the co-produced neighborhood regeneration.
Design/methodology/approach
An evolutionary game approach was utilized as the research method to analyze the interest interactions between the two parties, the differences and similarities in strategy choices and the influencing factors in government and resident-initiated project types, respectively. Chongqing was selected as the case area for empirical analysis, with data derived from project materials and in-depth interviews.
Findings
This study revealed dynamic interactions between local governments and residents, significant differences between the two project types regarding co-production levels, the positive role of residents' perceived loss and the effect of marginal benefits on critical influencing factors.
Originality/value
Drawing upon co-production theory, this paper elucidates how different levels of co-production are implemented and highlights the differences between the two types of neighborhood regeneration projects within governance systems characterized by strong state discourse power and a lack of public participation tradition. It addresses current issues and provides critical references for government policymakers and urban planners to make informed decisions and promote co-produced neighborhood rehabilitation projects.
Details
Keywords
Manjeet Kumar, Xu Liu, Kapil Kumar Kalkal, Virender Dalal and Manjeet Kumari
The purpose of this paper is to study the propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free surface of such…
Abstract
Purpose
The purpose of this paper is to study the propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free surface of such media..
Design/methodology/approach
The mathematical model evolved by Zhou et al. (2019) is solved through the Helmholtz decomposition theorem. The propagation velocities of bulk waves in partially saturated poro-thermoelastic media are derived by using the potential functions. The phase velocities and attenuation coefficients are expressed in terms of inhomogeneity angle. Reflection characteristics (phase shift, loci of vertical slowness, amplitude, energy) of elastic waves are investigated at the stress-free thermally insulated boundary of a considered medium. The boundary can be permeable or impermeable. The incident wave is portrayed with both attenuation and propagation directions (i.e. inhomogeneous wave). Numerical computations are executed by using MATLAB.
Findings
In this medium, the permanence of five inhomogeneous waves is found. Incidence of the inhomogeneous wave at the thermally insulated stress-free surface results in five reflected inhomogeneous waves in a partially saturated poro-thermoelastic media. The reflection coefficients and splitting of incident energy are obtained as a function of propagation direction, inhomogeneity angle, wave frequency and numerous thermophysical features of the partially saturated poro-thermoelastic media. The energy of distinct waves (incident wave, reflected waves) accompanying interference energies between distinct pairs of waves have been exhibited in the form of an energy matrix.
Originality/value
The sensitivity of propagation characteristics (velocity, attenuation, phase shift, loci of vertical slowness, energy) to numerous aspects of the physical model is analyzed graphically through a particular numerical example. The balance of energy is substantiated by virtue of the interaction energies at the thermally insulated stress-free surface (opened/sealed pores) of unsaturated poro-thermoelastic media through the bulk waves energy shares and interaction energy.
Details
Keywords
Xinjian Ma, Shiqian Liu, Huihui Cheng and Weizhi Lyu
This paper aims to focus on the sensor fault-tolerant control (FTC) for civil aircraft under exterior disturbance.
Abstract
Purpose
This paper aims to focus on the sensor fault-tolerant control (FTC) for civil aircraft under exterior disturbance.
Design/methodology/approach
First, a three-step cubature Kalman filter (TSCKF) is designed to detect and isolate the sensor fault and to reconstruct the sensor signal. Meanwhile, a nonlinear disturbance observer (NDO) is designed for disturbance estimation. The NDO and the TSCKF are combined together and an NDO-TSCKF is proposed to solve the problem of sensor faults and bounded disturbances simultaneously. Furthermore, an FTC scheme is designed based on the nonlinear dynamic inversion (NDI) and the NDO-TSCKF.
Findings
The method is verified by a Cessna 172 aircraft model under bias gyro fault and constant angular rate disturbance. The proposed NDO-TSCKF has the ability of signal reconstruction and disturbance estimation. The proposed FTC scheme is also able to solve the sensor fault and disturbance simultaneously.
Research limitations/implications
NDO-TSCKF is the novel algorithm used in sensor signal reconstruction for aircraft. Then, disturbance observer-based FTC can improve the flight control system performances when the system with faults.
Practical implications
The NDO-TSCKF-based FTC scheme can be used to solve the sensor fault and exterior disturbance in flight control. For example, the bias gyro fault with constant angular rate disturbance of a civil aircraft is studied.
Social implications
Signal reconstruction for critical sensor faults and disturbance observer-based FTC for civil aircraft are useful in modern civil aircraft design and development.
Originality/value
This is the research paper studies on the signal reconstruction and FTC scheme for civil aircraft. The proposed NDO-TSCKF is better than the current reconstruction filter because the failed sensor signal can be reconstructed under disturbances. This control scheme has a better fault-tolerant capability for sensor faults and bounded disturbances than using regular NDI control.
Details
Keywords
Zilong Cao, Yupu Guan and Wei Chen
To increase the use of the meshless method, a hybrid stress method is introduced into the meshless method.
Abstract
Purpose
To increase the use of the meshless method, a hybrid stress method is introduced into the meshless method.
Design/methodology/approach
The method is based on the radial point interpolation method (RPIM). According to the Hellinger Reissner principle, stress functions are introduced into the solution procedure. Finite elements are used as background cells for integration. All cells are divided into two types – the H cells, which are around the traction-free circular boundary, and the G cells. For the H cells, stress functions in polar coordinates are created. For the G cells, 12-parameter stress functions in Cartesian coordinates are used. Stress functions are based on equilibrium equations and stress compatible equation.
Findings
Numerical results show that this method is reliable.
Originality/value
Hybrid stress methods have been applied to finite element methods, but the finite element methods have not been applied into meshless methods.
Details
Keywords
Yijun Liu, Guiyong Zhang, Huan Lu and Zhi Zong
Due to the strong reliance on element quality, there exist some inherent shortcomings of the traditional finite element method (FEM). The model of FEM behaves overly stiff, and…
Abstract
Purpose
Due to the strong reliance on element quality, there exist some inherent shortcomings of the traditional finite element method (FEM). The model of FEM behaves overly stiff, and the solutions of automated generated linear elements are generally of poor accuracy about especially gradient results. The proposed cell-based smoothed point interpolation method (CS-PIM) aims to improve the results accuracy of the thermoelastic problems via properly softening the overly-stiff stiffness.
Design/methodology/approach
This novel approach is based on the newly developed G space and weakened weak (w2) formulation, and of which shape functions are created using the point interpolation method and the cell-based gradient smoothing operation is conducted based on the linear triangular background cells.
Findings
Owing to the property of softened stiffness, the present method can generally achieve better accuracy and higher convergence results (especially for the temperature gradient and thermal stress solutions) than the FEM does by using the simplest linear triangular background cells, which has been examined by extensive numerical studies.
Practical implications
The CS-PIM is capable of producing more accurate results of temperature gradients as well as thermal stresses with the automated generated and unstructured background cells, which make it a better candidate for solving practical thermoelastic problems.
Originality/value
It is the first time that the novel CS-PIM was further developed for solving thermoelastic problems, which shows its tremendous potential for practical implications.
Details
Keywords
Yukun Hu, Suihuai Yu, Dengkai Chen, Jianjie Chu, Yanpu Yang and Qing Ao
A successful process of design concept evaluation has positive influence on subsequent processes. This study aims to consider the evaluation information at multiple stages and the…
Abstract
Purpose
A successful process of design concept evaluation has positive influence on subsequent processes. This study aims to consider the evaluation information at multiple stages and the interaction among evaluators and improve the credibility of evaluation results.
Design/methodology/approach
This paper proposes a multi-stage approach for design concept evaluation based on complex network and bounded confidence. First, a network is constructed according to the evaluation data. Depending on the consensus degree of evaluation opinions, the number of evaluation rounds is determined. Then, bounded confidence rules are applied for the modification of preference information. Last, a planning function is constructed to calculate the weight of each stage and aggregate information at multiple evaluation stages.
Findings
The results indicate that the opinions of the evaluators tend to be consistent after multiple stages of interactive adjustment, and the ordering of design concept alternatives tends to be stable with the progress of the evaluation.
Research limitations/implications
Updating preferences according to the bounded confidence rules, only the opinions within the trust threshold are considered. The attribute information of the node itself is inadequately considered.
Originality/value
This method addresses the need for considering the evaluation information at each stage and minimizes the impact of disagreements within the evaluation group on the evaluation results.
Details
Keywords
Yongjun Jin, Haihang Cui, Li Chen, Kai Sun, Haiguo Yin and Zhe Liu
This study aims to perform flow simulations inside the acinus with fine alveolar pores (Kohn pores) using hexagonal cells and bottom-up geometric modeling, which enabled the…
Abstract
Purpose
This study aims to perform flow simulations inside the acinus with fine alveolar pores (Kohn pores) using hexagonal cells and bottom-up geometric modeling, which enabled the elimination of invalid voids using previous top-bottom methods and spherical or circular cells.
Design/methodology/approach
Regular hexagonal cells were used to construct alveoli with no gaps via tessellation. Some hexagonal cells were fused to eliminate the inner boundaries to represent the structure of the bronchial tree. For the remaining hexagonal cells, the side lengths of the shared walls were adjusted to construct alveolar pores. Periodic moving boundaries with the same phase were set for all walls to describe synchronous contraction and expansion of the bronchi and alveoli.
Findings
More realistic flow characteristics in the distal lung were obtained. The effects of pore size and the mechanism of auxiliary ventilation of alveolar pores were revealed.
Originality/value
To the best of the authors’ knowledge, this is the first numerical simulation study on the function of multiple alveolar pores at the level of pulmonary acini, which will be helpful for simulating the dynamic process of cough and sputum excretion in the future.
Details
Keywords
Dongliang Qi, Dongdong Wang, Like Deng, Xiaolan Xu and Cheng-Tang Wu
Although high-order smooth reproducing kernel mesh-free approximation enables the analysis of structural vibrations in an efficient collocation formulation, there is still a lack…
Abstract
Purpose
Although high-order smooth reproducing kernel mesh-free approximation enables the analysis of structural vibrations in an efficient collocation formulation, there is still a lack of systematic theoretical accuracy assessment for such approach. The purpose of this paper is to present a detailed accuracy analysis for the reproducing kernel mesh-free collocation method regarding structural vibrations.
Design/methodology/approach
Both second-order problems such as one-dimensional (1D) rod and two-dimensional (2D) membrane and fourth-order problems such as Euler–Bernoulli beam and Kirchhoff plate are considered. Staring from a generic equation of motion deduced from the reproducing kernel mesh-free collocation method, a frequency error measure is rationally attained through properly introducing the consistency conditions of reproducing kernel mesh-free shape functions.
Findings
This paper reveals that for the second-order structural vibration problems, the frequency accuracy orders are p and (p − 1) for even and odd degree basis functions; for the fourth-order structural vibration problems, the frequency accuracy orders are (p − 2) and (p − 3) for even and odd degree basis functions, respectively, where p denotes the degree of the basis function used in mesh-free approximation.
Originality/value
A frequency accuracy estimation is achieved for the reproducing kernel mesh-free collocation analysis of structural vibrations, which can effectively underpin the practical applications of this method.